Conclusion & First Impressions

The new Snapdragon 888 is overall a very impressive package from Qualcomm, advancing the most important areas for which today’s smartphones are being used. 5G connectivity was the big new feature of 2020 SoCs and smartphones, and the new 888 platform represents the evolution and maturing of the new technologies that had been introduced in prior generations.

The big focus point of the Snapdragon 888 were clearly AI and cameras. The new Hexagon 780 IP block looks immensely impressive and to me seems like a major competitive advantage of the new SoC design – other vendors which aren’t as vertically integrated with their accelerator IPs will have to respond to Qualcomm’s new advancements as it seems like a major performance advantage that will be hard to mimic.

Today’s flagship smartphones have diminished ways of differentiating themselves from one another, with the cameras still being the one aspect where vendors still have very different approaches to their designs. Qualcomm’s push for a triple-ISP system in the Snapdragon 888 pushes the upper limits of what vendors will be able to do on their smartphones, allowing for a continued push for the smartphone camera ecosystem. Even for still-picture camera experiences, it seems that Qualcomm is expecting a more notable technology jump in 2021 as we see the introduction of new sensors and imaging techniques, enabled by the new SoC.

The new CPU configuration gives the new SoC a good uplift in performance, although it’s admittedly less of a jump than I had hoped for this generation of Cortex-X1 designs, and I do think Qualcomm won’t be able to retain the performance crown for this generation of Android-SoCs, with the performance gap against Apple’s SoCs also narrowing less than we had hoped for.

On the GPU side, the new 35% performance uplift is extremely impressive. If Qualcomm is really able to maintain similar power figures this generation, it should allow the Snapdragon 888 to retake the performance crown in mobile, and actually retain it for the majority of 2021.

The new Snapdragon 888 to me looks like a continuation of Qualcomm’s excellent execution over the last few years. Striking a balance between performance, power efficiency, and features is something that may be harder than it sounds, and Qualcomm’s engineering teams here seem to be focused on being able to deliver the overall best package.

Much like the Snapdragon 865, and the last couple of generations of Snapdragon SoCs before it, I expect the new Snapdragon 888 to be an excellent foundation for 2021’s flagship devices, and I’m looking forward to experience the new generation.

Related Reading:

Triple ISPs: Concurrent Triple-Camera Usage
Comments Locked

123 Comments

View All Comments

  • name99 - Wednesday, December 2, 2020 - link

    From the outside, the problem appears to be that ARM is too deferential to its customers (one of the things that nV could fix if they get control...)
    In particular (compare with Apple) ARM appears unwilling to just do something new and aggressive and hope that it will be picked up when it's ready.

    This might seem reasonable, but the problem is that your main customers are companies like Samsung and Qualcomm, the gang that couldn't shoot straight. Both (still!) seem utterly unaware that Moore's law is still a thing, and that the needs of devices evolve with time. So they both insist their priorities are smallest cheapest cores possible -- until there's a mad scramble to match whatever Apple is doing.

    This foolishness has been most obvious with the A55. Sure, maybe in some technical sense the A55 is good enough wrt performance and energy and did not need to be updated for those reasons. BUT refusing to update it locks the ISA at v8.2.
    (Does anyone know how this is handled given that in theory the A78 supports some v8.3 instructions? Is the rule just that you don't use those instructions on a dynamiq A78+A55 system?)

    So QC and SS are stuck. Because n years ago they were too stupid to see the big picture, that future small cores would need to track the evolving ARM ISA, they've held back what their large cores can do. A more dynamic ARM should probably just have ignored whatever they said and switched to a model like Apple that updates the large and small cores in lockstep every year.
  • GeoffreyA - Thursday, December 3, 2020 - link

    The magic is simple: Icestorm is quite likely an out-of-order design, which picks up the performance quite a bit. And as for the extra power that comes along with out of order, they probably got it right down with enough optimisation/clever design (physical register files, micro-op cache, etc). Reminds me a bit of the comparison between Atom and Bobcat/Jaguar. For my part, I feel that in-order designs aren't really worth the supposed power savings (except in some cases), so I don't know why these companies waste their time.
  • GeoffreyA - Thursday, December 3, 2020 - link

    Replying to brucethemoose.
  • eastcoast_pete - Friday, December 4, 2020 - link

    Does anyone here know for sure whether Apple's efficiency cores are indeed out-of-order designs? That might actually help explain the better performance and performance/Wh of their Ice Storm cores; and raise the question: why hasn't ARM updated its little core design? I guess one answer is because they didn't have to (yet).
  • Lolimaster - Thursday, December 10, 2020 - link

    Considering A77 is more efficient and powerful at the same frequency than the A55 which is really old. Increase it a bit in size with big update and extra budget and you the Apple "lpA76" cores.
  • tuxRoller - Thursday, December 3, 2020 - link

    The answer is... the old big cores are replaced by the new X series and become the new little (or mid) core.
  • yeeeeman - Wednesday, December 2, 2020 - link

    can't wait for battery life tests, although i suspect they will be a bit worse than tsmc 7nm.
  • iphonebestgamephone - Thursday, December 3, 2020 - link

    Why did they bother with 5nm then? Is this 5nm even cheaper than tsmc 7?
  • SyukriLajin - Thursday, December 3, 2020 - link

    because apple have been marketing 5nm, and they can't sell "the best [android] soc in the market" with 7nm, especially when their android competitors are also moving to 5nm. the efficiency difference might be small, but marketing impact is big enough to ignore. plus most phones running this chip in 2021 probably have 4000mAh+ batteries in it anyway, wouldn't make any impact in consumer products.
  • iphonebestgamephone - Thursday, December 10, 2020 - link

    Do the general public care more about nm or antutu? Or is it that oems would be more likely to get the 5nm one?

Log in

Don't have an account? Sign up now