GPU Performance & Power

On the GPU side of things, testing the QRD865 is a bit complicated as we simply didn’t have enough time to run the device through our usual test methodology where we stress both peak as well as sustained performance of the chip. Thus, the results we’re able to present today solely address the peak performance characteristics of the new Adreno 650 GPU.

Disclaimer On Power: As with the CPU results, the GPU power measurements on the QRD865 are not as high confidence as on a commercial device, and the preliminary power and efficiency figures posted below might differ in final devices.

3DMark Sling Shot 3.1 Extreme Unlimited - Physics

The 3DMark Physics tests is a CPU-bound benchmark within a GPU power constrained scenario. The QRD865 here oddly enough doesn’t showcase major improvements compared to its predecessor, in some cases actually being slightly slower than the Pixel 4 XL and also falling behind the Kirin 990 powered Mate 30 Pro even though the new Snapdragon has a microarchitectural advantage. It seems the A77 does very little in terms of improving the bottlenecks of this test.

3DMark Sling Shot 3.1 Extreme Unlimited - Graphics

In the 3DMark Graphics test, the QRD865 results are more in line with what we expect of the GPU. Depending on which S855 you compare to, we’re seeing 15-22% improvements in the peak performance.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screen

In the GFXBench Aztec High benchmark, the improvement over the Snapdragon 855 is roughly 26%. There’s one apparent issue here when looking at the chart rankings; although there’s an improvement in the peak performance, the end result is that the QRD865 still isn’t able to reach the sustained performance of Apple’s latest A13 phones.

GFXBench Aztec High Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 26.14 3.83 6.82 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 34.00 6.21 5.47 fps/W
iPhone XS (A12) Warm N7 19.32 3.81 5.07 fps/W
iPhone XS (A12) Cold / Peak N7 26.59 5.56 4.78 fps/W
QRD865 (Snapdragon 865) N7P 20.38 4.58 4.44 fps/W
Mate 30 Pro (Kirin 990 4G) N7 16.50 3.96 4.16 fps/W
Galaxy 10+ (Snapdragon 855) N7 16.17 4.69 3.44 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 15.59 4.80 3.24 fps/W

Looking at the estimated power draw of the phone, it indeed does look like Qualcomm has been able to sustain the same power levels as the S855, but the improvements in performance and efficiency here aren’t enough to catch up to either the A12 or A13, with Apple being both ahead in terms of performance, power and efficiency.

GFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

GFXBench Aztec Normal Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 73.27 4.07 18.00 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 91.62 6.08 15.06 fps/W
iPhone XS (A12) Warm N7 55.70 3.88 14.35 fps/W
iPhone XS (A12) Cold / Peak N7 76.00 5.59 13.59 fps/W
QRD865 (Snapdragon 865) N7P 53.65 4.65 11.53 fps/W
Mate 30 Pro (Kirin 990 4G) N7 41.68 4.01 10.39 fps/W
Galaxy 10+ (Snapdragon 855) N7 40.63 4.14 9.81 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 40.18 4.62 8.69 fps/W

We’re seeing a similar scenario in the Normal variant of the Aztec test. Although the performance improvements here do match the promised figures, it’s not enough to catch up to Apple’s two latest SoC generations.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 100.58 4.21 23.89 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 123.54 6.04 20.45 fps/W
iPhone XS (A12) Warm N7 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak N7 103.83 5.98 17.36 fps/W
QRD865 (Snapdragon 865) N7P 89.38 5.17 17.28 fps/W
Mate 30 Pro (Kirin 990 4G) N7 75.69 5.04 15.01 fps/W
Galaxy 10+ (Snapdragon 855) N7 70.67 4.88 14.46 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 68.87 5.10 13.48 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Mate 20 Pro (Kirin 980) N7 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W

Even on the more traditional tests such as Manhattan 3.1, although again the Adreno 650 is able to showcase good improvements this generation, it seems that Qualcomm didn’t aim quite high enough.

GFXBench T-Rex 2.7 Off-screen

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 289.03 4.78 60.46 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 328.90 5.93 55.46 fps/W
iPhone XS (A12) Warm N7 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak N7 271.86 6.10 44.56 fps/W
QRD865 (Snapdragon 865) N7P 206.07 4.70 43.84 fps/W
Galaxy 10+ (Snapdragon 855) N7 167.16 4.10 40.70 fps/W
Mate 30 Pro  (Kirin 990 4G) N7 152.27 4.34 35.08 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 166.00 4.96 33.40fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Mate 20 Pro (Kirin 980) N7 135.75 4.64 29.25 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W

Lastly, the T-Rex benchmark which is the least compute heavy workload tested here, and mostly is bottlenecked by texture and fillrate throughput, sees a 23% increase for the Snapdragon 865.

Overall GPU Conclusion – Good Improvements – Competitively Not Enough

Overall, we were able to verify the Snapdragon 865’s performance improvements and Qualcomm’s 25% claims seem to be largely accurate. The issue is that this doesn’t seem to be enough to keep up with the large improvements that Apple has been able to showcase over the last two generations.

During the chipset’s launch, Qualcomm was eager to mention that their product is able to showcase better long-term sustained performance than a competitor which “throttles within minutes”. While we don’t have confirmation as to whom exactly they were referring to, the data and narrative here only matches Apple’s device behaviour. Whilst we weren’t able to test the sustained performance of the QRD865 today, it unfortunately doesn’t really matter for Qualcomm as the Snapdragon 865 and Adreno 650’s peak performance falls in at a lower level than Apple’s A13 sustained performance.

Apple isn’t the only one Qualcomm has to worry about; the 25% performance increases this generation are within reach of Arm’s Mali-G77. In theory, Samsung’s Exynos 990 should be able to catch up with the Snapdragon 865. Qualcomm had been regarded as the mobile GPU leader over the last few years, but it’s clear that development has slowed down quite a lot recently, and the Adreno family has lost its crown.

Machine Learning Inference Performance Final Thoughts
Comments Locked

178 Comments

View All Comments

  • joms_us - Monday, December 16, 2019 - link

    Right, he even claimed a 2015 Apple A9 is faster than Skylake and Ryzen processors today. Only a complete !Diot will believe this claim.
  • Quantumz0d - Monday, December 16, 2019 - link

    You should see AT forum. A thread has been dedicated to discuss this BS fanboyism and outcome was Apple won.
  • Andrei Frumusanu - Monday, December 16, 2019 - link

    x86 emulation on Arm has absolutely nothing to do with any topic discussed here or QC vs Apple performance. I'm sick and tired of your tirades here as nothing you say remains technical or on point to the matter.

    The experience I have, when dismissing any other aspects such as iOS's super slow animations, is that the iPhones are far ahead in performance of any Android device out there, which is very much what the benchmark depict.
  • Quantumz0d - Monday, December 16, 2019 - link

    Did I mention anything from your article on QC vs x86 ? I was replying to a comment on "Revolutionary" performance of A series vs x86. And then you claimed it as nonsensical point of x86 on ARM.

    So "super slow animations" & "far ahead". What do you mean by that ? An iPhone X vs a 11 Pro will exhibit the launching speed, then loading speed differences same as 835 vs 855 which can be observed. Everything ApplePro guy did a massive video of iPhones across multiple A series iterations which is the ONLY way a user can see the performance improvement.

    But when Android vs iOS you are saying iPhone animation speeds are super slow yet the benches show much lead..So how is the user seeing the far ahead in performance out there when OP7 Pro vs iPhone 11 Pro Max, like iPhone is still faster as you claim but in reality user is seeing same ?
  • Andrei Frumusanu - Monday, December 16, 2019 - link

    Apparently I'm able say that because I'm able to differentiate between CPU performance, raw performance, and "platform performance".

    CPU performance is clear cut on where we're at and if you're still arguing this then I have no interest in discussing this.

    Raw performance is what I would call things that are not actually affected by the OS, web content *is* far faster on the latest iPhone than on Androids, that's a fact. Among this is actual real applications, when Civilization came to iOS the developers notably commented on the performance being essentially almost as good as desktop devices, the performance is equal to x86 laptops or better: https://www.anandtech.com/show/13661/the-2018-appl...

    And finally, the platform experience includes stuff like the very slow animations. I expect this is a big part as to what you regard as being part of your "experience" and "reality". I even complained about this in the iPhone 11 review as I stated that I feel the hardware is being held back by the software here.

    Now here's what might blow your mind: I can both state that Apple's CPUs are far superior at the same time as stating that the Android experience might be faster, because both statements are very much correct.
  • Quantumz0d - Monday, December 16, 2019 - link

    Okay thanks for that clarity on Raw performance and other breakdowns like CPU, Platform. Yes I can also see that Web performance on A series has always been faster vs Androids.

    I forgot about that article. Good read, and on Civ 6 port however it lacks the GFX options. I would also mention that TFlops cannot be even compared within same company. Like Vega 64 is 12TFs vs a 5700XT at 9TFs, latter completely wrecks the former in majority except for the compute loads utlizing HBM. I know you mentioned the FP16 and other aspects of the figure in opening, just saying as many people just take that aspect. Esp the new Xbox SX and Console as a whole (They add the CPU too into that figure)

    And finally. Yes ARM scales in normal browsing, small tasks vs x86 laptops which majority of the people nowadays are doing (colleagues don't even use PCs) but for higher performance and other workloads ARM cannot cut it at all.

    Plus I'd also add these x86 laptop parts throttle a lot incl. Macbooks obv because they are skimping on cooling them for thinness so their consistency isn't there as well just like A series.
  • joms_us - Monday, December 16, 2019 - link

    When I look at the comparisons here, I look only for Android vs. Android or Apple vs. Apple. Comparing them with different OSes and more so primitive tools is a worthless approach. Firstly, the results need to be normalized, one Soc is showing lead while sucking more power than the other. Secondly, the bloated scores of Apple Soc here does not represent real-world results. Most Android phones with SD855 are faster if not the same than iPhone 11.
  • Andrei Frumusanu - Monday, December 16, 2019 - link

    > Comparing them with different OSes and more so primitive tools is a worthless approach.

    SPEC is a native apples-to-apples comparison. The web benchmarks and the 3D benchmarks are apples-to-apples interpreted or abstracted, same-workload comparisons.
    All the tests here are directly comparable - the tests which aren't and which rely on OS specific APIs, such as PCMark, obviously don't have the Apple data.

    > Firstly, the results need to be normalized, one Soc is showing lead while sucking more power than the other.

    That's a very stupid rationale. If you were to follow that logic you'd have to normalise little cores up in performance as well because they suck much less power.
  • joms_us - Monday, December 16, 2019 - link

    > SPEC is a native apples-to-apples comparison.

    Stop right there, Apple vs. Apple only

    > The web benchmarks and the 3D benchmarks are apples-to-apples interpreted or abstracted, same-workload comparisons.
    All the tests here are directly comparable - the tests which aren't and which rely on OS specific APIs, such as PCMark, obviously don't have the Apple data.

    How? Just like Geekbench, different compilers are used. Different distribution of loads are made.
    My Ryzen 2700 can finished 5 full GB run as fast as one full GB run in an iPhone and yet the single core score of iPhone is higher than any Ryzen. You are showing Apple A13 (LOL A13 is faster than the fastest AMD or Intel chip) using Jurassic Spec benchmark?

    Talk about dreams vs. reality.

    > That's a very stupid rationale. If you were to follow that logic you'd have to normalise little cores up in performance as well because they suck much less power.

    We are talking about efficiency here, your beloved Apple chip is sucking twice the power than SD855 or SD865 per workload.

    Have you ever load a consumer website or run an consumer app with these phones side-by-side? Don't tell they are not using cpu or memory resources. They are, they are doing most if not all of the workloads on the charts here. While your chart if showing Apple has twice the performance vs SD865, the phone doesn't tell lies. A bloated benchmark score does not translate to real-world result.

    It is time to stop this worthless propaganda that Android SoC is inferior than Apple and the laughable IPC king (iPhone chip is faster than desktop processors).

    Until iPhone can play Crysis smoother than even low end laptops, this BS claim that it is the fastest chip should stop.
  • Quantumz0d - Monday, December 16, 2019 - link

    Agreed.

    It really feels like a propaganda every single article on CPU Apple gets super limelight because of these benches on a closed walled garden platform from OS to HW to Repair.

    The power consumption of A series processors deteriorating the battery was nicely thrown under the rug by Apple throttling bs. They even added the latest throttle switch for XS series. But yea no one cares. Apple's deeppockets allow top lawyers in their hands to manipulate every thing.

    The consumer app part. Its perfect use case since we never see any of the Android phones lag as interpreted here due to the dominance of A series by 2-3x folds and in real life nothing is observable. And comparing that to the x86 Desktop machines with proper OS and a computing usecases like Blender, Vray, MATLAB, Compliation, MIPS of Compression and decompression, Decode/Encoding and superior Filesystem support and socketed / Standardized HW (PCIe, I/O options), Virtualization and Gaming, DRAM scaling choice (user can buy whatever memory they want or any HW as its obvious)..this whole thing screams bs. It would be better if the highlight is mentioned on benches and realwork might differ but its not the case at all.

    The worst is spineless corporate agenda of allowing Chinese CPC to harvest every bit from their Cloud data Center in China allowing the subversion and anti liberty. A.k.a Anti American principles.

Log in

Don't have an account? Sign up now