GPU Performance & Power

On the GPU side of things, testing the QRD865 is a bit complicated as we simply didn’t have enough time to run the device through our usual test methodology where we stress both peak as well as sustained performance of the chip. Thus, the results we’re able to present today solely address the peak performance characteristics of the new Adreno 650 GPU.

Disclaimer On Power: As with the CPU results, the GPU power measurements on the QRD865 are not as high confidence as on a commercial device, and the preliminary power and efficiency figures posted below might differ in final devices.

3DMark Sling Shot 3.1 Extreme Unlimited - Physics

The 3DMark Physics tests is a CPU-bound benchmark within a GPU power constrained scenario. The QRD865 here oddly enough doesn’t showcase major improvements compared to its predecessor, in some cases actually being slightly slower than the Pixel 4 XL and also falling behind the Kirin 990 powered Mate 30 Pro even though the new Snapdragon has a microarchitectural advantage. It seems the A77 does very little in terms of improving the bottlenecks of this test.

3DMark Sling Shot 3.1 Extreme Unlimited - Graphics

In the 3DMark Graphics test, the QRD865 results are more in line with what we expect of the GPU. Depending on which S855 you compare to, we’re seeing 15-22% improvements in the peak performance.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screen

In the GFXBench Aztec High benchmark, the improvement over the Snapdragon 855 is roughly 26%. There’s one apparent issue here when looking at the chart rankings; although there’s an improvement in the peak performance, the end result is that the QRD865 still isn’t able to reach the sustained performance of Apple’s latest A13 phones.

GFXBench Aztec High Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 26.14 3.83 6.82 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 34.00 6.21 5.47 fps/W
iPhone XS (A12) Warm N7 19.32 3.81 5.07 fps/W
iPhone XS (A12) Cold / Peak N7 26.59 5.56 4.78 fps/W
QRD865 (Snapdragon 865) N7P 20.38 4.58 4.44 fps/W
Mate 30 Pro (Kirin 990 4G) N7 16.50 3.96 4.16 fps/W
Galaxy 10+ (Snapdragon 855) N7 16.17 4.69 3.44 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 15.59 4.80 3.24 fps/W

Looking at the estimated power draw of the phone, it indeed does look like Qualcomm has been able to sustain the same power levels as the S855, but the improvements in performance and efficiency here aren’t enough to catch up to either the A12 or A13, with Apple being both ahead in terms of performance, power and efficiency.

GFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

GFXBench Aztec Normal Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 73.27 4.07 18.00 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 91.62 6.08 15.06 fps/W
iPhone XS (A12) Warm N7 55.70 3.88 14.35 fps/W
iPhone XS (A12) Cold / Peak N7 76.00 5.59 13.59 fps/W
QRD865 (Snapdragon 865) N7P 53.65 4.65 11.53 fps/W
Mate 30 Pro (Kirin 990 4G) N7 41.68 4.01 10.39 fps/W
Galaxy 10+ (Snapdragon 855) N7 40.63 4.14 9.81 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 40.18 4.62 8.69 fps/W

We’re seeing a similar scenario in the Normal variant of the Aztec test. Although the performance improvements here do match the promised figures, it’s not enough to catch up to Apple’s two latest SoC generations.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 100.58 4.21 23.89 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 123.54 6.04 20.45 fps/W
iPhone XS (A12) Warm N7 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak N7 103.83 5.98 17.36 fps/W
QRD865 (Snapdragon 865) N7P 89.38 5.17 17.28 fps/W
Mate 30 Pro (Kirin 990 4G) N7 75.69 5.04 15.01 fps/W
Galaxy 10+ (Snapdragon 855) N7 70.67 4.88 14.46 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 68.87 5.10 13.48 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Mate 20 Pro (Kirin 980) N7 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W

Even on the more traditional tests such as Manhattan 3.1, although again the Adreno 650 is able to showcase good improvements this generation, it seems that Qualcomm didn’t aim quite high enough.

GFXBench T-Rex 2.7 Off-screen

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 289.03 4.78 60.46 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 328.90 5.93 55.46 fps/W
iPhone XS (A12) Warm N7 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak N7 271.86 6.10 44.56 fps/W
QRD865 (Snapdragon 865) N7P 206.07 4.70 43.84 fps/W
Galaxy 10+ (Snapdragon 855) N7 167.16 4.10 40.70 fps/W
Mate 30 Pro  (Kirin 990 4G) N7 152.27 4.34 35.08 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 166.00 4.96 33.40fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Mate 20 Pro (Kirin 980) N7 135.75 4.64 29.25 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W

Lastly, the T-Rex benchmark which is the least compute heavy workload tested here, and mostly is bottlenecked by texture and fillrate throughput, sees a 23% increase for the Snapdragon 865.

Overall GPU Conclusion – Good Improvements – Competitively Not Enough

Overall, we were able to verify the Snapdragon 865’s performance improvements and Qualcomm’s 25% claims seem to be largely accurate. The issue is that this doesn’t seem to be enough to keep up with the large improvements that Apple has been able to showcase over the last two generations.

During the chipset’s launch, Qualcomm was eager to mention that their product is able to showcase better long-term sustained performance than a competitor which “throttles within minutes”. While we don’t have confirmation as to whom exactly they were referring to, the data and narrative here only matches Apple’s device behaviour. Whilst we weren’t able to test the sustained performance of the QRD865 today, it unfortunately doesn’t really matter for Qualcomm as the Snapdragon 865 and Adreno 650’s peak performance falls in at a lower level than Apple’s A13 sustained performance.

Apple isn’t the only one Qualcomm has to worry about; the 25% performance increases this generation are within reach of Arm’s Mali-G77. In theory, Samsung’s Exynos 990 should be able to catch up with the Snapdragon 865. Qualcomm had been regarded as the mobile GPU leader over the last few years, but it’s clear that development has slowed down quite a lot recently, and the Adreno family has lost its crown.

Machine Learning Inference Performance Final Thoughts
Comments Locked

178 Comments

View All Comments

  • Andrei Frumusanu - Monday, December 16, 2019 - link

    You forgot I'm member of the Illuminati, half mole-people from my dad's side and half lizard-man from my mother's side. I love my monthly deep state paycheck alongside the Apple subsidies I get for spreading their narrative. Wait till people find out the earth is really flat.
  • Quantumz0d - Monday, December 16, 2019 - link

    LOL. Lawyer manipulation is for their Class Actions KB fiasco, Touch Disease, Error 53..not you (Just clarifying) and idk if you know Louis Rossman on YT. If not I suggest to watch and know how the fleecing is done and consumer is kept in dark always. The revelations of their stranglehold on HW IC chip for supplying to repair services and Lobbying against Repair is enough to understand and gauge the fundamemal pillars of a company and its ethics.

    Sorry I take ethics and choice/liberty into account over utopian performance and elitist / Luxury status quo stance.
  • Andrei Frumusanu - Monday, December 16, 2019 - link

    I pleaded with you to not go into tangential rants for this article again, yet here we are.
  • Andrei Frumusanu - Monday, December 16, 2019 - link

    > How? Just like Geekbench, different compilers are used. Different distribution of loads are made.

    Please explain to me what the hell "different distributions of loads are made" is meant to mean? You have zero technical rationale behind such statements. All the comparisons here were made with the Clang/LLVM compilers on all platforms - bar the ISA, there is exactly zero difference in the workload logic between the platforms, and Apple's toolchain isn't doing something completely different either that it would suddenly invalidate the comparison.

    > You are showing Apple A13 (LOL A13 is faster than the fastest AMD or Intel chip) using Jurassic Spec benchmark?

    Yes I am because that is the reality of the matter.

    > We are talking about efficiency here, your beloved Apple chip is sucking twice the power than SD855 or SD865 per workload.

    And it's finishing the workload than twice as fast, ending up being *almost* as efficient in terms of the energy used by the computation. What matters here is the energy efficiency, not the power efficiency, and in this regard Apple's devices are top of the line.

    > While your chart if showing Apple has twice the performance vs SD865, the phone doesn't tell lies.

    What's even your point here? Of course the iPhones are significantly faster in loading webpages?

    Return here when you have an actual factual argument to present, because right now you just have been repeating complete nonsense.
  • joms_us - Monday, December 16, 2019 - link

    > Please explain to me what the hell "different distributions of loads are made" is meant to mean? You have zero technical rationale behind such statements. All the comparisons here were made with the Clang/LLVM compilers on all platforms - bar the ISA, there is exactly zero difference in the workload logic between the platforms, and Apple's toolchain isn't doing something completely different either that it would suddenly invalidate the comparison.

    The compiler maybe the same but the scheduler of tasks in Android and Windows are different than in iOS. Many background apps are running simultaneously on Android and Windows machine, how about iOS? Frozen apps? LOL

    >Yes I am because that is the reality of the matter.

    Only matters to you, not in outside world. If you really think A9 has better IPC than Ryzen or Skylake, why don't you join the Apple engineers and build the fastest gaming/productivity PC with Apple A9 chip and sell it like hotcakes? No? Cannot t be? Even Apple doesn't claim their SoC is faster than even low end desktop today LOL. Even milking the customers with overpriced Macs with "Intel" inside.

    > And it's finishing the workload than twice as fast, ending up being *almost* as efficient in terms of the energy used by the computation. What matters here is the energy efficiency, not the power efficiency, and in this regard Apple's devices are top of the line.

    What matters is how fast it can finish the whole task not each micro-workload nonsense. If I want to zip and upload a file or encode and upload a video, I only care how fast it will finish the whole task and for that matter. If I want to play games, do I care how the fast the damn phone will compute the vector, pixel location, math operations etc? I only care how elegant, smooth and how fast the gaming experience will be.

    iPhone is not twice as fast as loading any web page, any consumer app or even exporting or transcoding videos. Different apps yield different results, you are showing one worthless primitive benchmark where iPhone is fast, but out there, hundreds or thousands of different apps and website are showing the opposite results.

    Here is one or two for you, one is showing twice the performance over the other =D

    https://youtu.be/ay9V5Ec8eiY?t=529

    https://youtu.be/DtSgdrKztGk?t=432
  • Andrei Frumusanu - Monday, December 16, 2019 - link

    > the scheduler of tasks in Android and Windows are different than in iOS.

    The scheduler isn't any different, because the scheduler doesn't do anything when there's only a single thread on a core to be run. There is literally no scheduling.

    > If you really think A9 has better IPC than Ryzen or Skylake

    Correction, I don't really just think it, I know it.

    > What matters is how fast it can finish the whole task not each micro-workload nonsense.

    The whole SPEC suite takes exactly an hour to complete, so quit with the micro nonsense if you have no idea what's even being tested here.

    > Here is one or two for you, one is showing twice the performance over the other =D

    Both phones don't even use the freaking CPU when transcoding videos - they're both offloaded using the dedicated fixed function video encoders much like you can offload encoding on desktop PCs to your GPU's encoders, instead of doing it inefficiently on the CPU.

    You have absolutely ZERO understanding of what's going on here.
  • joms_us - Monday, December 16, 2019 - link

    > The scheduler isn't any different, because the scheduler doesn't do anything when there's only a single thread on a core to be run. There is literally no scheduling.

    Then the SoC is not maximized but underperforming.

    > Correction, I don't really just think it, I know it.

    Sure you do, now where is the fastest processor in this planet? Where is our A9-powered gaming PC LOL.

    > The whole SPEC suite takes exactly an hour to complete, so quit with the micro nonsense if you have no idea what's even being tested here.

    Just goes to show how primitive your tool is. 2020 is just around the corner, here you are still using a 2006 tool. This is like claiming Wolfdale is faster than Ryzen because it can finish 1M SuperPI faster LOL.
  • Dug - Monday, December 16, 2019 - link

    You really don't have any argument because you really aren't sure what you are talking about.
  • joms_us - Monday, December 16, 2019 - link

    Am I or you? Isn't it clear that SPEC result does not translate to real-world? Where is the double performance as shown here? Show us proof that iPhone has twice the performance, I've posted links with two Android phones decimating iPhone 11.

    Sure you can claim all day you want that iPhone is the fastest phone via SPEC LOL, I'd rather see it translate to actual performance, not imaginary numbers.
  • cha0z_ - Monday, December 23, 2019 - link

    You clearly have no idea what you are talking about. Dunno why Andrei dedicated so much of his time trying to explain to you in primitive language what's going on (so you can understand).

Log in

Don't have an account? Sign up now