GPU Performance & Power

On the GPU side of things, testing the QRD865 is a bit complicated as we simply didn’t have enough time to run the device through our usual test methodology where we stress both peak as well as sustained performance of the chip. Thus, the results we’re able to present today solely address the peak performance characteristics of the new Adreno 650 GPU.

Disclaimer On Power: As with the CPU results, the GPU power measurements on the QRD865 are not as high confidence as on a commercial device, and the preliminary power and efficiency figures posted below might differ in final devices.

3DMark Sling Shot 3.1 Extreme Unlimited - Physics

The 3DMark Physics tests is a CPU-bound benchmark within a GPU power constrained scenario. The QRD865 here oddly enough doesn’t showcase major improvements compared to its predecessor, in some cases actually being slightly slower than the Pixel 4 XL and also falling behind the Kirin 990 powered Mate 30 Pro even though the new Snapdragon has a microarchitectural advantage. It seems the A77 does very little in terms of improving the bottlenecks of this test.

3DMark Sling Shot 3.1 Extreme Unlimited - Graphics

In the 3DMark Graphics test, the QRD865 results are more in line with what we expect of the GPU. Depending on which S855 you compare to, we’re seeing 15-22% improvements in the peak performance.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screen

In the GFXBench Aztec High benchmark, the improvement over the Snapdragon 855 is roughly 26%. There’s one apparent issue here when looking at the chart rankings; although there’s an improvement in the peak performance, the end result is that the QRD865 still isn’t able to reach the sustained performance of Apple’s latest A13 phones.

GFXBench Aztec High Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 26.14 3.83 6.82 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 34.00 6.21 5.47 fps/W
iPhone XS (A12) Warm N7 19.32 3.81 5.07 fps/W
iPhone XS (A12) Cold / Peak N7 26.59 5.56 4.78 fps/W
QRD865 (Snapdragon 865) N7P 20.38 4.58 4.44 fps/W
Mate 30 Pro (Kirin 990 4G) N7 16.50 3.96 4.16 fps/W
Galaxy 10+ (Snapdragon 855) N7 16.17 4.69 3.44 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 15.59 4.80 3.24 fps/W

Looking at the estimated power draw of the phone, it indeed does look like Qualcomm has been able to sustain the same power levels as the S855, but the improvements in performance and efficiency here aren’t enough to catch up to either the A12 or A13, with Apple being both ahead in terms of performance, power and efficiency.

GFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

GFXBench Aztec Normal Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 73.27 4.07 18.00 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 91.62 6.08 15.06 fps/W
iPhone XS (A12) Warm N7 55.70 3.88 14.35 fps/W
iPhone XS (A12) Cold / Peak N7 76.00 5.59 13.59 fps/W
QRD865 (Snapdragon 865) N7P 53.65 4.65 11.53 fps/W
Mate 30 Pro (Kirin 990 4G) N7 41.68 4.01 10.39 fps/W
Galaxy 10+ (Snapdragon 855) N7 40.63 4.14 9.81 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 40.18 4.62 8.69 fps/W

We’re seeing a similar scenario in the Normal variant of the Aztec test. Although the performance improvements here do match the promised figures, it’s not enough to catch up to Apple’s two latest SoC generations.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 100.58 4.21 23.89 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 123.54 6.04 20.45 fps/W
iPhone XS (A12) Warm N7 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak N7 103.83 5.98 17.36 fps/W
QRD865 (Snapdragon 865) N7P 89.38 5.17 17.28 fps/W
Mate 30 Pro (Kirin 990 4G) N7 75.69 5.04 15.01 fps/W
Galaxy 10+ (Snapdragon 855) N7 70.67 4.88 14.46 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 68.87 5.10 13.48 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Mate 20 Pro (Kirin 980) N7 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W

Even on the more traditional tests such as Manhattan 3.1, although again the Adreno 650 is able to showcase good improvements this generation, it seems that Qualcomm didn’t aim quite high enough.

GFXBench T-Rex 2.7 Off-screen

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone 11 Pro (A13) Warm N7P 289.03 4.78 60.46 fps/W
iPhone 11 Pro (A13) Cold / Peak N7P 328.90 5.93 55.46 fps/W
iPhone XS (A12) Warm N7 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak N7 271.86 6.10 44.56 fps/W
QRD865 (Snapdragon 865) N7P 206.07 4.70 43.84 fps/W
Galaxy 10+ (Snapdragon 855) N7 167.16 4.10 40.70 fps/W
Mate 30 Pro  (Kirin 990 4G) N7 152.27 4.34 35.08 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy 10+ (Exynos 9820) 8LPP 166.00 4.96 33.40fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Mate 20 Pro (Kirin 980) N7 135.75 4.64 29.25 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W

Lastly, the T-Rex benchmark which is the least compute heavy workload tested here, and mostly is bottlenecked by texture and fillrate throughput, sees a 23% increase for the Snapdragon 865.

Overall GPU Conclusion – Good Improvements – Competitively Not Enough

Overall, we were able to verify the Snapdragon 865’s performance improvements and Qualcomm’s 25% claims seem to be largely accurate. The issue is that this doesn’t seem to be enough to keep up with the large improvements that Apple has been able to showcase over the last two generations.

During the chipset’s launch, Qualcomm was eager to mention that their product is able to showcase better long-term sustained performance than a competitor which “throttles within minutes”. While we don’t have confirmation as to whom exactly they were referring to, the data and narrative here only matches Apple’s device behaviour. Whilst we weren’t able to test the sustained performance of the QRD865 today, it unfortunately doesn’t really matter for Qualcomm as the Snapdragon 865 and Adreno 650’s peak performance falls in at a lower level than Apple’s A13 sustained performance.

Apple isn’t the only one Qualcomm has to worry about; the 25% performance increases this generation are within reach of Arm’s Mali-G77. In theory, Samsung’s Exynos 990 should be able to catch up with the Snapdragon 865. Qualcomm had been regarded as the mobile GPU leader over the last few years, but it’s clear that development has slowed down quite a lot recently, and the Adreno family has lost its crown.

Machine Learning Inference Performance Final Thoughts
Comments Locked

178 Comments

View All Comments

  • eastcoast_pete - Monday, December 16, 2019 - link

    Thanks Andrei! Amy chance to post the S855's QRD's figures also? These QRDs are "for example" demo units, and the final commercial handsets are often different (faster). Also, any word from QC on how much AI processing power will be needed to run 5G functionality? Huawei's Kirin 990 5G has twice the AI TOPs than their LTE version, and that seems to be due to their (integrated) 5G modem using about half the AI TOPs when actually working in 5G mode
  • eastcoast_pete - Monday, December 16, 2019 - link

    Any chance, of course. Edit function would be nice.
  • Andrei Frumusanu - Monday, December 16, 2019 - link

    I don't see the point in showing the QRD855 results, there's a large spectrum of S855 device results out there and likely we'll see the same with the S865. The QRD855 and QRD865 aren't exactly apples-to-apples configuration comparisons either so that comparison doesn't add any value.
  • ChitoManure - Monday, December 16, 2019 - link

    Because QRDs from qualcomm might have the simikar cooling system and the OEMs usually have better thermal design which is why they are faster..
  • Andrei Frumusanu - Monday, December 16, 2019 - link

    None of the tests were made under thermal stress scenarios, the cooling isn't a limitation on the QRDs, the performance showcased is the best the chip can achieve.
  • Kishoreshack - Monday, December 16, 2019 - link

    Man the web benchmarks are DISAPPOINTING
    feel like buying a S10+ now
  • Kishoreshack - Monday, December 16, 2019 - link

    Just shows how Samsung does the best implementation of Qualcomm Soc's
    even last years Samsung 855 devices are able to out perform Snapdragon 865 in many benchmarks

    Can't wait for S11 now
  • Kishoreshack - Monday, December 16, 2019 - link

    Anyone even expected Qualcomm beating Apple in performance?
    You were dreaming then
    don't know whom to blame Arm or Qualcomm
    but the Android world is constantly receiving inferior chips
  • Karmena - Monday, December 16, 2019 - link

    IMHO all these SOCs are at the level that average Joe can do with any of these and the device will feel snappy and good. Now it comes down to the OS delivering the performance and features that users crave.
  • doungmli - Monday, December 16, 2019 - link

    the only benchmarks are the web, 3dmark and geekbench for the a13 chip the rest is in favor of the snapdragon. It should perhaps be remembered that this is a soc so cpu + isp + gpu + ... and when adding the snapdragon >>>> A13. just see the AI ​​markers which take into account the entire soc. For gfx bench it would be necessary to explain why so much difference whereas in the other benchmarks GPU there is not this difference but gfx bench is not outdated for more than a year for me it is no longer a reference. For web performance just see the speed tests on youtube to see that this score is not justified

Log in

Don't have an account? Sign up now