Beyond the Core

Nominally today’s disclosure is more about the Tremont microarchitecture than any SoC it might appear in, like Lakefield or Snow Ridge. To that end, Intel wasn’t talking about GPU support (Lakefield will have Gen11 graphics), but Intel did discuss that Tremont would be the first Atom design to fully support Intel’s Speed Shift / ACPI hardware flags, allowing for faster ramp-up and ramp-down of high-frequency operation. 

Intel also stated that Tremont supports Total Memory Encryption to prevent physical attacks, Rooted Secure Boot and Boot Guard, and specific accelerator interfacing instructions. With respect to Spectre, Meltdown, and L1TF, Intel stated that Tremont will have the same protections as Cascade Lake.

We also asked Intel about module-level voltage and power control. We were told that within a quad-core module with four Tremont cores, all the cores share the same frequency plane, but each core can enter separate c-states to reduce power consumption when not in use.

Final Thoughts and Slide Deck

In the past, at least from my perspective, dealing with Atom platforms has been amusing. Atom devices typically work great for hyper-focused and optimized software that can take advantage of a latency-insensitive workload, such as networking equipment or a NAS, but for any general purpose use I find them incredibly slow. Perhaps I’m just too used to the big cores on the devices I use – but with Intel saying that Atom is being refocused on performance, it will be interesting to see how Tremont devices and other Core devices will overlap. This graph from Intel is very striking, and if you squint, it looks a lot like some of the smartphone power/performance graphs we’ve produced in the past.

With Intel moving Core down in power to the 1.5W level, again it will be interesting to see how Tremont can play in that 2mW to 2W range that Atom has traditionally played in. The last generation Goldmont Plus devices were going beyond that, and in this power range we also have smartphone cores coming into play. After showing the slide deck to Andrei, we were discussing how a Tremont might stack up against an Arm Cortex A76, or a Kryo core. When we can get our hands on Tremont, we’ll see how they compare. When it comes to the products that Tremont is aiming for however, it still has that x86 advantage.

We did ask a few questions from Intel that we didn’t get answers to, such as die size and target frequencies. The other question to discuss is Intel’s current high-demand issues putting pressure on its manufacturing technologies. Tremont is still a low cost, low powered core, so logic may dictate that it will be a while before we see consumer chips enter the market. Ultimately Intel’s high-demand issues are around 14nm, and so far we’ve only seen Tremont discussed on Intel’s 10+ process with Lakefield and Snow Ridge. What we know about Intel’s 10nm/10+ capacity isn’t a lot, but reports vary from yields being ‘on track’ to ‘working with key OEM partners only’. Intel’s driver for 10+ right now is Ice Lake, which is coming to some premium notebook designs this year, and Lakefield has been announced for the Surface Neo. It is not known what the expected volume for the Neo will be, but it is unlikely to be large. Whether or not Tremont will see the light of day in traditional Atom Celeron and Pentium processors is another question entirely – the Goldmont Atom families have suffered while Intel’s 14nm efforts are more focused on enterprise hardware that can be sold for a much higher $$ per square millimeter. Beyond Lakefield, we might not actually see Tremont in any other consumer chip before the next generation Atom if Intel cannot get its issues sorted.

As and when we get a Lakefield device, we will put it through our tests. Stay tuned.

Tremont: A Wider Back End Slide Deck
Comments Locked

101 Comments

View All Comments

  • azazel1024 - Tuesday, October 29, 2019 - link

    Sure in some cases, but most not super cheap Atom implementations from even the Cherry Trail era weren't all on the USB2 bus, at least not the eMMC. Most typical performance I saw was >100MB/sec reads and 30 or so MB/sec writes on slower implementations. Some of the better eMMC implementations were hitting ~180MB/sec reads and 70MB/sec writes and 6-7k IOPS.

    Not SSD performance, but storage performance isn't the issue with HEVC playback. HEVC support is. My Cherry Trail doesn't support H265 decode. I can play back a 1080p HEVC file, but the processor is running between 70-90% utilized when doing it. For an H264 encoded 1080p file it typically runs about 15% utilization to do it.

    It can't handle 4k decode.

    My biggest issue has been networking performance on the one that I have. Some are better setup, but not all of them. My first generation Cherry was an Asus T100. Max storage performance was 110MB/sec reads, 37MB/sec writes, 5k IOPS. The microSD card slot maxed out at 20MB/sec read and writes. The Wireless was 1:1 802.11n and maxed at about 10MB/sec down and 8MB/sec up (obviously not concurrently) and it was only 40MHz on 5GHz, not 2.4GHz (20MHz only on that).

    My current one is a T100ha after my T100 died. Some improvements, some backslides. The read/write speed is up to 170MB/sec and 48MB/sec with 7k max IOPS. The microSD card reader can hit about 80MB/sec reads and 30MB/sec writes (in a card reader in my desktop the same microSD card can hit 80MB/sec reads and 50MB/sec writes). The wireless though is WAY slower. It hits 6MB/sec down and 3MB/sec up max. Supposedly it can do the same 40MHz on 5GHz and 20MHz on 2.4GHz, but I don't see anything like real 1:1 40MHz performance on 5GHz (which should be in the ballpark of 10-12MB/sec, 80-100Mbps).

    That is honestly my biggest complaint is the wireless on it is just horrendous. I often use an 802.11ac nano dongle in the keyboard dock USB3 port as that easily pushes 20MB/sec up and down. Even simple website loading using it is significantly faster than the embedded wireless. I know it is a cheap tablet/2-in-1, but it is one of those probably springing an extra $1-2 on BOM for a nicer even 802.11n 1:1 solution would have gone a long way. Let alone at the time it was released, 1:1 802.11ac wireless options were pretty widely available.

    I am curious if someone like Asus (or someone else, I am NOT tied to them) will use Tremont in any small 2-in-1. Heck, an update to Surface with one might be nice. I do like the smaller form factor of a 10-11" size tablet. I almost always use my 2-in-1 as a laptop, so a hard keyboard dock is reasonably important to me (but a really nice type cover would be fine, I almost always use it on a table, not on my lap), but I do sometimes use it as an actual tablet for reading (movie/TV/YouTube would generally be fine as a laptop as I am rarely just holding my tablet in front of my face to do that. Usually on a table/desk, occasionally sitting on my knees/stomach but docked). I don't need a TON of performance with one. But at the same time, if I want to grab a movie off my server for an overnight trip or something, it is kind of painful to be downloading a 3GB file at 6MB/sec and having to wait the better part of 10 minutes to download the darn thing. It is usually worth my while to go rummage in my desk drawer, grab my USB3 GbE adapter, plug it in to my tablet and in to a spare LAN drop in one of my rooms and quick grab the file at ~50MB/sec or so a second of the micro SD card write speed and be done in maybe 2 minutes of doing all those steps and the download time. Let alone if I want to grab maybe 2 or 3 movie files at 6-10GB.

    A nicer screen would of course be real swell too, but honestly 720p on a 10.1" screen isn't horrible. The wireless limitations are my biggest headache. A bit more CPU and GPU performance would also be nice. I wouldn't mind being able to handle slightly newer/more advanced games on it, but frankly it isn't my gaming machine nor do I need it to be. Portable is more important to me that powerful. But some of the basic tasks it needs to be better at/feeling its age.

    Wireless being at least 2x better, and it would be nicer to be more like 3-4x better (which 802.11ac 1:1, if you don't mess up the implementation IS at ~20-25MB/sec). If CPU performance was maybe 15-20% better (and Tremont sounds like it is probably more like 50-100% faster than Cherry trail), GPU maybe twice as fast (also sounds like it would be a lot faster than that), storage performance and peripheral storage is fine as it is on my T100ha, but yeah I sure as heck don't mind some improvements there also. Battery life being better would be nice, but I usually manage >10hrs if I am not doing anything super intensive. I could even live with the current screen, though better coverage of sRGB (I think mine is about 70% sRGB), contrast (actually mine is pretty good at I think around 800:1 or so, not great, but not bad) and higher resolution (900p would be nice, 1080p better).

    Maybe someone can do all that in a package less than $400. Oh and 8GB of RAM and 128GB of storage. Max $500 price tag.
  • eek2121 - Monday, October 28, 2019 - link

    eMMC isn't typically known for speed.
  • Namisecond - Friday, November 1, 2019 - link

    Most eMMC isn't optimized for performance. They tend to be optimized for cost.
  • levizx - Friday, October 25, 2019 - link

    You are confusing iGPU with QSV, they are different IP blocks.
  • solidsnake1298 - Monday, October 28, 2019 - link

    I am not confusing QSV with the iGPU. While QSV is functionally different from the EUs that generate "graphics" and physically occupies a different section of die area from the EUs, QSV is LOGICALLY part of the "iGPU." I'm not sure this is an option in my particular BIOS, but humor me here. If I were to disable the iGPU in my J4205 and use an add-in Nvidia/AMD GPU wouldn't that also mean that QSV is no longer available? On the full power desktop side, if I bought a KF SKU Intel processor (the ones without an iGPU), doesn't that mean that QSV is not available?

    Yes, I was referring to QSV specifically. But QSV is a feature of Intel's iGPUs. Just like NVENC is a feature of most of Nvidia's GPUs.
  • abufrejoval - Tuesday, November 5, 2019 - link

    If you disabled the iGPU, the VPU is gone, too. But you don't need to disable the iGPU when you add a dGPU: Just connect your monitor to the dGPU and leave the iGPU in idle.

    Not sure it's worth it, though. I can't see that the Intel VPUs are any better than the ones from Nvidia or AMD, neither in speed nor in quality. And for encoding quality/density CPU still seems best, if most expensive in terms of energy.
  • solidsnake1298 - Tuesday, November 5, 2019 - link

    The point of my post was to point out that I was not "confusing" QSV with the iGPU when they are logically part of the same block on the die. You can't have QSV (Quick Sync Video) without the iGPU being active. So when, in the context of video decoding, I refer to "iGPU" I am obviously talking about the QSV block on the iGPU.
  • Namisecond - Friday, November 1, 2019 - link

    4K output was completely dependent upon the vendor to implement. I have a Gemini Lake laptop that used an HDMI 1.3 or 1.4 output chip. I love it for it's all-day long battery and don't miss the 4K output at all.
  • hyno111 - Thursday, October 24, 2019 - link

    Atom performance actually improved a lot every generation. I would perfer Goldmont Plus based Pentium than the low power dual core Skylake++ without turbo.
  • Samus - Thursday, October 24, 2019 - link

    That's not true. Atom at various stages has actually taken a step BACKWARDS in performance.

    Most obviously, Cedarview was around 20% slower per product SKU than Pineview, thought performance per watt remained nearly identical. Still, the D525 remained the top performaning Atom for years until Avoton launched in 2013.

    Atom was also plagued with x64 compatibility issues until Avoton officially supported the x86 extension, along with virtualization, mostly because Avoton was designed specifically as a "Server" product, finding its way in everything from NAS to SMB microservers where it performed terribly compared to even rudimentary RISC CPU's.

    It's an absolute marketting failure by Intel to continue pushing the cute name Atom with the reputation they have built for it. They were moving away for awhile, branding many traditional Atom-architecture products Pentium J\Celeron J, then going back on that move to shift Pentium\Celeron back to the Core microarchitecture, and further mutilating the process by actually calling Core-based CPU's Atom's with the x3/x5/x7.

    No wonder AMD has maintained consistent OEM support. At least their CPU product stack has made sense for the last 10 years...

Log in

Don't have an account? Sign up now