Intel Core i9-9990XE Conclusion

Intel never really announced the Core i9-9990XE into the market. We broke the story this year at CES in January after confirming from several sources in that initial auction said that it was taking place – a 14-core 5.0 GHz CPU and an unknown quantity would be available for select system integrators and OEM partners to bid on. There is no warranty from Intel, so these integrators were taking a risk, and could ultimately bid too high for a chip that might not sell.

In the end, that initial auction fell to (at least) three companies, of which two ended up with the CPUs. We very quickly found out that CaseKing snapped up most of them, and the company eventually ended up putting them for direct sale (with 1 year warranty) on their connected websites for €2999 (now €2849) as well as offering several of their high profile water cooled extreme overclocked systems with the chip inside. We also saw Puget Systems with at least one, and another companies was ICC, an Intel partner that focuses on a number of markets including the financial market. It was ICC who built a 1U system for this chip and sampled the system for us to review.

The system was provided with custom proprietary liquid cooling, which we’re not able to show you. The thing is a beast, however, and can appropriately cool up to 400W of CPU in a 1.75-inch form factor. It’s also loud, registering 78 decibels whether the system is at idle or running a full workload. Given that it is a 1U server, this would suggest that a datacenter is the best place for it. I have no doubt that it could be transferred into a tower, although much like the 28-core Xeon W-3175X we tested in January, it requires a substantial cooling setup to be tamed.

In performance, the tweaked system from ICC was built for low latency financial trading. It was only paired with 32 GB of DDR4, but running at DDR4-3600 with tuned subtimings. We added in our standard testing SSD and GPU, although due to the complexity of the system build we weren’t able to run games on this thing. But for raw ST performance, the Core i9-9990XE puts all the other high-end desktop chips to shame – as it should do. Everything from Intel on a Core chip gets obliterated, and against the Xeon W-3175X which has 28-cores, the Xeon does go ahead just on the multithreaded stuff but this Core i9-9990XE kills it when frequency is the limiting factor. This shows up in our compile test, where the right balance of cores and frequency are needed - the Core i9-9990XE set a new world record in our benchmark. There are some caveats - the mesh frequency does seem to be a little bit of a hold back in some tests, or frequency going in and out of turbo modes can cause additional delays in tests.

Against AMD counterparts, that 5.0 GHz frequency carves through anything like butter. Where AMD has to play is on its 32-core Threadripper CPUs, and even then it’s a tradeoff – 14 cores at 5.0 GHz against 32 cores at ~3.4 GHz means that the 2990WX has a lead only it’s a raw compute problem, but put in any memory limited scenario, or add in AVX2/AVX512, and the Core i9-9990XE is going to win.

We obviously haven’t talked price. The W-3175X is a similar $3000 to the i9-9990XE, but has ECC support and six memory channels, but doesn’t have that single thread frequency. The 2990WX is a NUMA design that works well in focused applications rather than the i9-9990XE which works well in almost every scenario, but the 2990WX is 30-40% cheaper.

Comparing the i9-9990XE
Intel   AMD
Xeon
W-3175X
Core i9
9990XE
Core i9
9900KS
AnandTech Ryzen
7 3950X
TR 2
2990WX
EPYC
7542
28 14 8 Cores 16 32 32
56 28 16 Threads 32 64 64
3.1 4.0 4.0 Base 3.5 3.0 2.9
  5.0 5.0 All-Core      
4.5 5.0 5.0 Turbo 4.7 4.2 3.4
255 W 255 W 127 W? TDP 105 W 250 W 225W
6 x 2666 4 x 2666 2 x 2666 DDR4 2 x 3200 4 x 2933 8 x 3200
48 44 16 PCIe 24 64 128
$2999 $auction $513 MSRP $749 $1799 $3400

Then around the corner we have Intel’s 8-core 5.0 GHz processor, the Core i9-9900KS. This is a consumer level processor, with only two memory channels and 16 PCIe 3.0 lanes, but is set to be $513 when launched in a couple of days (October 30th). Users interested in an all-core 5.0 GHz processor out of the box (i.e., not overclocked) are likely to find that the 9900KS acts as a good starter position, which might be able to be scaled with the 9990XE when things like memory bandwidth start becoming an issue.

On the topic of sustainability, no-one is going to be able to deploy the Core i9-9990XE en-mass: Intel only has a few chips that meet the specifications, and these are auctioned to system integrators. So unless a customer wants a specific number, they will have to work with an system integrator with a set budget for that auction in mind, and even then, there’s no guarantee that Intel will have that many chips available (or if someone will outbid you). There’s also no-warranty on the parts from the perspective of the system integrator, so that adds additional cost. Companies looking at one of these systems might have to consider them as one-offs for their deployment, whereas by comparison, we expect there to be more Core i9-9900KS processors in the wild for companies to buy direct from retailers.

Ultimately, the Core i9-9990XE is a curio. It’s a hell of a curio, that’s for sure. It is like one of the house robots on Robot Wars (UK) or BattleBots (US): something completely outside the rules of normal sportsmanship and is big enough to beat you to a pulp, and it’s very rare that you would even own one, not at least before it owns you.

 

Power Consumption, Frequencies, and Thermals
POST A COMMENT

145 Comments

View All Comments

  • DazFG - Tuesday, October 29, 2019 - link

    Would like to see a average performance/Watt chart. Reply
  • abufrejoval - Tuesday, October 29, 2019 - link

    The older 3Dmark physics tests don't scale to all available processor cores, so those numbers are misleading. My observation has been that the newer/more demanding the base benchmark, the wider the physics. So e.g. I doubt that Ice Storm actually scores beyond 4 physical cores, while I have seen the physics benchmark correllating to the DX12 graphics (keep forgetting the name) actually pushed all 18 cores in my workstation. I run HWinfo on a secondary screen to monitor what's happening on the system and it cleary reflects that most cores aren't used on these CPU-only physics tests. Reply
  • abufrejoval - Tuesday, October 29, 2019 - link

    1.290V at 5 GHz all core may be "amazing" but it should really be "expected": Any chip that requires more voltage and thus power to push electrons through layer interconnects will fail the binning because of heat. And with every little part of 14 cores and their caches needing to qualify, it's easy to see how rare these are. Reply
  • DixonSoftwareSolutions - Tuesday, October 29, 2019 - link

    I'm still holding out for the i9-9999XE. Reply
  • Hifihedgehog - Tuesday, October 29, 2019 - link

    Agreeing to disagree with you, Ian, after seeing the benchmark results, I would hardly call this the slam dunk and beast it is made out to be. It is good in several benchmarks but it is highly specialized to the point I would argue the 9900KS would be the better choice of the two in nearly all cases for high frequency applications and the 3900X (and by extension 3950X) in multi-core applications. All in all, I am not really impressed and even less so with Threadripper 3000 and Cascade Lake on the verge of release. Reply
  • lejeczek - Tuesday, October 29, 2019 - link

    Who cares about tests done on Windows? Who would bother with Chrome compilation on Windows?? Author(s) sees that increasingly more tests are being done with Open Source and clumsily tries to mimic that. But for those interested in real testing - go to phoronix.com and openbenchmarking.org
    Lots love, xxx.
    Reply
  • Urufu - Tuesday, October 29, 2019 - link

    Not interested because that's not the real world that people experience every day when using these microprocessors. My apologies for seeming abrupt. Reply
  • lejeczek - Thursday, October 31, 2019 - link

    This certainly will sound abrupt - it's for that tiny little world and tiny people in it - the office?? Step outside for a moment and look at big data, clusters, HPC, all sort of servers & services, also academia! Linux & open source everywhere. Why?
    Might think... some media streaming, transcoding, codecs, etc. you might need that i9-9990XE beast in the office and for windows - sure if you click once here once there to run something - heavy duty transcoding that's Linux all around the clock.
    But if one does only pure 'office' and thinks s/he must have this i9-9990XE - well these are the same sort of people who even today when it makes no financial sense whatsoever(do not mention this is not 'office' cpu), who have been happy to pay hefty taxes to Intel for years, those people will do it anyway, will waste money on it, as they do with anything else I'm sure.
    But anyway, 'the office' stuff also we do with Linux, easy.
    Reply
  • TEAMSWITCHER - Wednesday, October 30, 2019 - link

    There is still a metric-sh*t-ton of software development that happens on Windows. Reply
  • MattZN - Tuesday, October 29, 2019 - link

    Did you say 600W under full load? For a single CPU socket and only 14 cores? That isn't a wattage that will beget a limited market. That's a wattage that makes the chip D.O.A. No market. At all. Anywhere. Not for 'high frequency trading' or anything else.

    -Matt
    Reply

Log in

Don't have an account? Sign up now