AMD Found An Issue, for +25-50 MHz

Of course, with Roman’s dataset hitting the internet with its results, a number of outlets reported on it and a lot of people were in a spin. It wasn’t long for AMD to have a response, issued in the form of a blog post. I’m going to take bits and pieces here from what is relevant, starting with the acknowledgement that a flaw was indeed found:

As we noted in this blog, we also resolved an issue in our BIOS that was reducing maximum boost frequency by 25-50MHz depending on workload. We expect our motherboard partners to make this update available as a patch in two to three weeks. Following the installation of the latest BIOS update, a consumer running a bursty, single threaded application on a PC with the latest software updates and adequate voltage and thermal headroom should see the maximum boost frequency of their processor.

AMD acknowledged that they had found a bug in their firmware that was reducing the maximum boost frequency of their CPUs by 25-50 MHz. If we take Roman’s data survey, adding 50 MHz to every value would push all the averages and modal values for each CPU above the turbo frequency. It wouldn’t necessarily help the users who were reporting 200-300 MHz lower frequencies, to which AMD had an answer there:

Achieving this maximum boost frequency, and the duration of time the processor sits at this maximum boost frequency, will vary from PC to PC based on many factors such as having adequate voltage and current headroom, the ambient temperature, installing the most up-to-date software and BIOS, and especially the application of thermal paste and the effectiveness of the system/processor cooling solution.

As we stated at the AMD Turbo section of this piece, the way that AMD implements its turbo is different, and it does monitor things like power delivery, voltage and current headroom, and will adjust the voltage/frequency based on the platform in use. AMD is reiterating this, as I expected they would have to.

AMD in the blog post mentioned how it had changed its firmware (1003AB) in August for system stability reasons, categorically denying that it was for CPU longevity reasons, saying that the latest firmware (1003ABBA) improves performance and does not affect longevity either.

The way AMD distributes its firmware is through AGESA (AMD Generic Encapsulated Software Architecture). The AGESA is essentially a base set of firmware and library files that gets distributed to motherboard vendors who then apply their own UEFI interfaces on top. The AGESA can also include updates for other parts of the system, such as the System Management Unit, that have their own firmware related to their operation. This can make updating things a bit annoying – motherboard vendors have been known to mix and match different firmware versions, because ultimately at the end of the day the user ends up with ‘BIOS F9’ or something similar.

AMD’s latest AGESA at the time of writing is 1003ABBA, which is going through motherboard vendors right now. MSI and GIGABYTE have already launched beta BIOS updates with the new AGESA, and should be pushing it through to stable versions shortly, as should be ASUS and ASRock.

Some media outlets have already tested this new firmware, and in almost all circumstances, are seeing a 25-50 MHz uplift in the way that the frequency was being reported. See the Tom’s Hardware article as a reference, but in general, reports are showing a 0.5-2.0% increase in performance in single thread turbo limited tests.

I Have a Ryzen 3000 CPU, Does It Affect Me?

The short answer is that if you are not overclocking, then yes. When your particular motherboard has a BIOS update for 1003ABBA, then it is advised to update. Note that updating a BIOS typically means that all BIOS settings are lost, so keep a track in case the DRAM needs XMP enabled or similar.

Users that are keeping their nose to the grindstone on the latest AMD BIOS developments should know the procedure.

The Future of Turbo

It would be at this point that I might make commentary that single thread frequency does not always equal performance. As part of the research for this article, I learned that some users believe that the turbo frequency listed on the box believe it is the all-core turbo frequency, which just goes to show that turbo still isn’t well understood in name alone. But as modern workloads move to multi-threaded environments with background processes, the amount of time spent in single-thread turbo is being reduced. Ultimately we’re ending up with a threading balance between background processes and immediate latency sensitive requirements.

At the end of the day, AMD identifying a 25-50 MHz deficit and fixing it is a good thing. The number of people for whom this is a critical boundary that enables a new workflow though, is zero. For all the media reports that drummed up AMD not hitting published turbo speeds as a big thing, most of those reporters ended up by contrast being very subdued with AMD’s fix. 2% on the single core turbo frequency hasn’t really changed anyone in this instance, despite all the fuss that was made.

I wrote this piece just to lay some cards on the table. The way AMD is approaching the concept of Turbo is very different to what most people are used to. The way AMD is binning its CPUs on a per-core basis is very different to what we’re used to. With all that in mind, peak turbo frequencies are not covered by warranty and are not guaranteed, despite the marketing material that goes into them. Users who find that a problem are encouraged to vote with their wallet in this instance.

Moving forward, I’m going to ask our motherboard editor, Gavin, to start tracking peak frequencies with our WSL tool. Because we’re defining the workload, our results might end up different to what users are seeing with their reporting tools while running CineBench or any other workload, but it can offer the purest result we can think of.

Ultimately the recommendations we made in our launch day Ryzen review still stand. If anything, if we had experienced some frequency loss, some extra MHz on the ST tests would push the parts slightly up the graph. Over time we will be retesting with the latest BIOS updates.

Detecting Turbo: Microseconds vs. Milliseconds
Comments Locked

144 Comments

View All Comments

  • yannigr2 - Thursday, September 19, 2019 - link

    "(3) because it just wasn’t worth drawing attention to it."

    Oh, no no, please do an article about this. A comparison with Intel's marketing slides from, lets say, 2013, when Intel had clearly the upper hand would be interesting.
  • eva02langley - Thursday, September 19, 2019 - link

    You don't get it, Intel goal was to draw attention and sow confusion by spreading FUD to damage AMD momentum.

    Anandtech acted professionally in this matter and I salute them for it. I get your point that writting an article that could backfire on them would have its advantages, however it would just continue feeding this FUD thrown by Intel. It would just help Intel in the end to maintain the doubt that should not even exist in the beginning.
  • casperes1996 - Thursday, September 19, 2019 - link

    Ah, yes. The Heisenberg Turbo-certainty principle at play.

    And of course not to mention the deeply philosophical quantum of a processor bursting but nobody noticing, did it even burst?

    Jest aside, great, balanced article. Good to get misconceptions dealt with. I like AMD's approach to turbo. Only marketting could be argued it a negative I'd say. In general I think it's almost like we're going back to the frequency wars. Marketting should instead emphasis how little importance frequency has. And really it should almost be obvious to people, since pretty much everyone has tried upgrading their computer with a newer chip, experiencing a much greater difference than if frequency was the determining factor. Don't know about you lot, but I'd rather have a modern chip at 1GHz than (if it were possible) a Motorola 68K at 8GHz
  • AntonErtl - Saturday, September 21, 2019 - link

    When I bought my first Intel CPU with Turbo (a Core i7-6700K), my expectation was that base was guaranteed, and Turbo is an unpredictable bonus in speed. So not everyone has the expectations that you claim everybody has because of experience with Intel. Later, my experience was that the base frequency means very little: With little load, the CPU clocks at some low frequency; with load, it clocks beyond the base frequency. And then there are things like the AVX offset, which seems to affect even my laptop's Core i3-3227U (which clocks at 1.7GHz instead of 1.9GHz when running matrix multiplication code), although AVX offset is not documented for this CPU.

    Back to AMD, in hindsight it might have been a better marketing strategy for AMD to announce the Ryzen 3000 CPUs with 100MHz less boost.

    Concerning the article, I found the way strange in which the different approaches of Intel and AMD to deal with the limits of the hardware were portrayed. If I pay the same amount, and get the same stock performance, then I prefer a CPU with more headroom (for either overclocking or future degradation). If I pay the same amount and get the same overclocking performance (i.e., headroom), then yes, a CPU that uses more of that headroom is probably preferable (at least if it does not affect durability); but does the pricing of the CPUs actually reflect the headroom? In any case, for non-overclockers price/stock-performance and durability are relevant, and headroom is merely interesting.
  • lakedude - Saturday, September 21, 2019 - link

    This per core binning is basically giving you a chip with ZERO headroom, none. Intel chips like the famous A300 cel have typically had great headroom with a few exceptions over the years. I applaud AMD's recent efforts but they are pushing their chips to the max and overstating their ability. This not guaranteed crap is for the birds. I'd be pissed if I had purchased a chip and it didn't get the full turbo that was advertised. If the chip can't hit a certain performance level with certainty then use more weasel words like "up to". As in "up to 4GHz turbo possible with some luck"
  • Korguz - Saturday, September 21, 2019 - link

    with that, intel cpus should also have on their boxes : at base clocks, our cpus use xx watts, but, in real world usage, and if you over clock, our chips can use 100 to 150 watts more.
  • lakedude - Sunday, September 22, 2019 - link

    Agreed, same type of thing with Intel's TDP. They blamed the motherboards, roll eyes.
  • John_M - Saturday, September 21, 2019 - link

    Thing is, AMD doesn't call it "Turbo". If tech journalists and reviewers called "Precision Boost" by its proper name there might be less confusion amongst the masses.
  • lakedude - Sunday, September 22, 2019 - link

    Precision Boost is more descriptive but the problem isn't so much with the name as the rating.

    Before reading this article I would have expected even the slowest core to be able to reach the advertised Boost speed. For example a AMD RYZEN 7 3700X 8-Core 3.6 GHz (4.4 GHz Max Boost) should be able to hit 4.4 GHz with each and every core and for longer than a few nano-seconds. Of course being unlocked OC frequencies beyond 4.4 GHz would not be assured.

    Now both Intel (TDP) and AMD (Boost) are pushing the limits of their technology and their own terminology.

    Good thing we have AnandTech!
  • Badelhas - Saturday, September 21, 2019 - link

    This is an awesome article, this is why I love AnandTech. Thank you.

Log in

Don't have an account? Sign up now