Do Manufacturers Guarantee Turbo Frequencies?

The question: ‘do manufacturers guarantee turbo frequencies?’ seems like it has an obvious answer to a lot of people. I performed a poll on my private twitter, and the voting results (700+) were astonishing.

31% of people said yes, 69% of people said no.

The correct answer is No, Turbo is never guaranteed.

To clarify, we need to define guarantee:

"A formal assurance that certain conditions will be fulfilled - if pertaining to a product, then that product will be repaired or replaced if not the specified quality."

This means that under a guarantee, the manufacturer would be prepared to repair or replace the product if it did not meet that guarantee. By that definition, Turbo is in no way under the guarantee from the manufacturer and does not fall under warranty.

Both AMD and Intel guarantee four things with their hardware: core counts, base frequency, peak power consumption at that base frequency (in essence, the TDP, even though strictly speaking TDP isn’t a measure of power consumption, but it is approximate), and the length of time those other items are guaranteed to work (usually three years in most locales). If you buy a 6 core CPU and only four cores work, you can get it replaced. If that six core CPU does not hit the base frequency under standard operations (standard is defined be Intel and AMD here, usually with a stock cooler, new paste, a clean chassis with active airflow of a minimum rate, and a given ambient temperature), then you can get it replaced.

Turbo, in this instance, is aspirational. We typically talk about things like ‘a 4.4 GHz Turbo frequency’, when technically we should be stating ‘up to 4.4 GHz Turbo frequency’. The ‘up to’ part is just as important as the rest, and the press (me included) is guilty of not mentioning the fact more often. Both Intel and AMD state that their processors under normal conditions should hit the turbo frequency, and both companies actively promote frequency enhancing tools such as aggressive power modes or better turbo profiles, but in no way is any of this actually guaranteed.

Yes, it does kind of suck (that’s the technical term). Both companies market their turbo frequencies loudly, proudly, and sometimes erroneously. Saying something is the ‘first X GHz’ processor only really means something if you can actually get into a position where that frequency is guaranteed. Unscrupulous retailers even put the turbo frequency as the highlight in their marketing material. Trying to explain to the casual user that this turbo frequency, this value that’s plastered everywhere, isn’t actually covered by the warranty, isn’t a good way to encourage them to get a processor.

A Short Detour on Mobile CPUs AMD’s Turbo Issue (Abridged)
Comments Locked

144 Comments

View All Comments

  • GeoffreyA - Wednesday, September 18, 2019 - link

    Excellent article and detective work, Ian! Thank you for it. Also reminds me of observation in QM, where experiment affects the results. Anyway, have a great day.
  • eva02langley - Wednesday, September 18, 2019 - link

    "However, given recent articles by some press, as well as some excellent write-ups by Paul Alcorn over at Tom’s Hardware* "

    Please, I know you are parent sites, but HELL with that. Paul literally test the hardware with the SAME motherboard, the MSI GODLIKE x570 and never... ever mentioned anything close to a BIOS issue. He did an half-ass job that I could call as amateurish at best.

    In the meantime, Steve from HardwareUnboxed tested the same CPU on DIFFERENT board and concluded into BIOS immaturity, what I called on the first instance of Toms series of bashing article.
  • ajlueke - Thursday, September 19, 2019 - link

    I wouldn't necessarily agree, but the spirit of the statement is on track. In Paul Alcorn's write-up he attempted to associate the missing boost MHz, to a statement Shamino made about reliability, and then changes in thermal thresholds observed by "The Stilt".
    He never bothers to explain, why single threaded boosting (the thing everyone is complaining about) would be related to a threshold change from 80C to 75C when those temperatures are never observed during a lightly threaded workload. He then heats the boards up to those temps and looks at boosting, and sure enough, something changed just like the Stilt said. But what, if anything, does that have to do with the missing single thread boost MHz, when temps are well below 75C for most end users?
  • eva02langley - Wednesday, September 18, 2019 - link

    " 1. Popular YouTuber der8aur performed a public poll of frequency reporting that had AMD in a very bad light, with some users over 200 MHz down on turbo frequency,
    2. The company settled for $12.1m in a lawsuit about marketing Bulldozer CPUs,
    3. Intel made some seriously scathing remarks about AMD performance at a trade show,
    4. AMD’s Enterprise marketing being comically unaware of how its materials would be interpreted."

    And in the meantime in the same week...

    1. https://www.extremetech.com/computing/297627-amd-o...
    2. https://www.extremetech.com/computing/297785-amd-s...

    Like I told AdoredTV... we have a very different definition of BAD WEEK. Honestly, those issue are hiccup of any new platform launch.
  • eva02langley - Wednesday, September 18, 2019 - link

    "Others we ignored, such as (4) for a failure to see anything other than an honest mistake given how we know the individuals behind the issues, or the fact that we didn’t report on (3) because it just wasn’t worth drawing attention to it."

    The reason why you guys are pros. You didn`t do Intel dirty work for propagating their propaganda... unlike TomsHardware...
  • quadibloc - Wednesday, September 18, 2019 - link

    Both Intel and AMD should start marketing their chips as "an X GHz chip", where X is the base frequency, if the turbo frequency isn't a part of the basic specirication of the chip that it must meet. Since even at the base frequency, apparently AMD chips don't last forever, it looks like I'm going to be underclocking mine a little.
  • ballsystemlord - Wednesday, September 18, 2019 - link

    Spelling and grammar corrections:

    "Certain parts of how the increased performance were understood,..."
    Should be "was" not "were":
    "Certain parts of how the increased performance was understood,..."

    "...(standard is defined be Intel and AMD here, usually with a stock cooler, new paste, a clean chassis with active airflow of a minimum rate, and a given ambient temperature)..."
    "by" not "be":
    "...(standard is defined by Intel and AMD here, usually with a stock cooler, new paste, a clean chassis with active airflow of a minimum rate, and a given ambient temperature)..."

    "This ultimately would lead some believe that this relates to a thermal capacity issue within the motherboard, CPU, or power delivery."
    Missing "to":
    "This ultimately would lead some to believe that this relates to a thermal capacity issue within the motherboard, CPU, or power delivery."
  • Uroshima - Thursday, September 19, 2019 - link

    Very nice article.

    From what I understood, AMD has done tried to get as close to the limit of the silicon as possible regarding clocks. This allowed them to "survive" the transition to 7nm. Intel has kept a wide margin to the actual limits of the silicon and at 10nm (which is more or less 7nm of AMD) they struggle as the chips simply can't clock high enough.

    Could be, this is the reason Intel will stick with 14nm for high performance until new silicon comes out that is similar to the AMD "to the limits" approach? This would be roughly 3 years from when they decided this (Jim Keller's arrival?).

    I have a hunch that this is the future we are going towards, new nodes with diminishing returns (or even reductions) on clocks but advantages in power and number of transistors. Keeping close to the limit of the silicon will be the key for performance, right next to IPC.

    On the other hand I would even consider that for some applications, having a refined 14* nm process could be an advantage (up to a frankenmonster of a hybrid 7/14 with UV). Intel, with its vast resources, should definitely explore this option to not only follow the competition but maintain the low thread performance crown.

    But then, looks like AMD did their homework this time. :)
  • eva02langley - Thursday, September 19, 2019 - link

    You are bang on. Intel 10nm process cost more, is having low yield and the frequency drop over 14nm++ is not bringing meaningful performances for making the transition.

    This is why Intel is releasing new server, laptop and desktop CPUs on 14nm++. It cost less, having better yield and perform better.
  • eva02langley - Thursday, September 19, 2019 - link

    However the power consumption just cannot match TSMC 7nm.

Log in

Don't have an account? Sign up now