GPU Performance & Power

GPU performance of the new Adreno 640 in the Snapdrago 855 is interesting: The company’s performance claims were relatively conservative as they showcased that the new unit would perform only 20% better than its predecessor. This is a relatively low figure given that Qualcomm also advertises that the new GPU sees a 50% increase in ALU configuration, as well as of course coming on a new 7nm process which should give the SoC a lot of new headroom.

Before discussing the implications in more detail, let’s see the performance numbers in the new GFXBench Aztec benchmarks.

As a reminder, we were only able to test the peak performance of the phone as we didn’t have time for a more thorough sustained performance investigation.

GFXBench Aztec Ruins - High - Vulkan/Metal - Off-screenGFXBench Aztec Ruins - Normal - Vulkan/Metal - Off-screen

Both Aztec High and Normal results fall pretty much in line with Qualcomm’s advertised 20% improvement over the Snapdragon 845. Here the new chipset falls behind Apple’s A11 and A12 chips – although power consumption at peak levels is very different as we’ll see in just a bit.

GFXBench Manhattan 3.1 Off-screen

GFXBench Manhattan 3.1 Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone XS (A12) Warm 7FF 76.51 3.79 20.18 fps/W
iPhone XS (A12) Cold / Peak 7FF 103.83 5.98 17.36 fps/W
Snapdragon 855 QRD 7FF 71.27 4.44 16.05 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 61.16 5.01 11.99 fps/W
Huawei Mate 20 Pro (Kirin 980) 7FF 54.54 4.57 11.93 fps/W
Galaxy S9 (Exynos 9810) 10LPP 46.04 4.08 11.28 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 38.90 3.79 10.26 fps/W
LeEco Le Pro3 (Snapdragon 821) 14LPP 33.04 4.18 7.90 fps/W
Galaxy S7 (Snapdragon 820) 14LPP 30.98 3.98 7.78 fps/W
Huawei Mate 10 (Kirin 970) 10FF 37.66 6.33 5.94 fps/W
Galaxy S8 (Exynos 8895) 10LPE 42.49 7.35 5.78 fps/W
Galaxy S7 (Exynos 8890) 14LPP 29.41 5.95 4.94 fps/W
Meizu PRO 5 (Exynos 7420) 14LPE 14.45 3.47 4.16 fps/W
Nexus 6P (Snapdragon 810 v2.1) 20Soc 21.94 5.44 4.03 fps/W
Huawei Mate 8 (Kirin 950) 16FF+ 10.37 2.75 3.77 fps/W
Huawei Mate 9 (Kirin 960) 16FFC 32.49 8.63 3.77 fps/W
Huawei P9 (Kirin 955) 16FF+ 10.59 2.98 3.55 fps/W

Switching over to the power efficiency table in 3D workloads, we see Qualcomm take the lead in terms of power efficiency at peak performance, only trailing behind Apple's newest A12. What is most interesting is the fact that the Snapdragon 855’s overall power consumption has gone down compared to the Snapdragon 845 – now at around 4.4W versus the 5W commonly measured in S845 phones.

GFXBench T-Rex 2.7 Off-screen

T-Rex’s performance gains are more limited because the test is more pixel and fill-rate bound. Here Qualcomm made a comment about benchmarks reaching very high framerates as they become increasingly CPU bound, but I’m not sure if that’s actually a problem yet as GFXBench has been traditionally very CPU light.

GFXBench T-Rex Offscreen Power Efficiency
(System Active Power)
  Mfc. Process FPS Avg. Power
(W)
Perf/W
Efficiency
iPhone XS (A12) Warm 7FF 197.80 3.95 50.07 fps/W
iPhone XS (A12) Cold / Peak 7FF 271.86 6.10 44.56 fps/W
Snapdragon 855 QRD 7FF 167.19 3.83 43.65 fps/W
Galaxy S9+ (Snapdragon 845) 10LPP 150.40 4.42 34.00 fps/W
Galaxy S9 (Exynos 9810) 10LPP 141.91 4.34 32.67 fps/W
Galaxy S8 (Snapdragon 835) 10LPE 108.20 3.45 31.31 fps/W
Huawei Mate 20 Pro (Kirin 980) 7FF 135.75 4.64 29.25 fps/W
LeEco Le Pro3 (Snapdragon 821) 14LPP 94.97 3.91 24.26 fps/W
Galaxy S7 (Snapdragon 820) 14LPP 90.59 4.18 21.67 fps/W
Galaxy S8 (Exynos 8895) 10LPE 121.00 5.86 20.65 fps/W
Galaxy S7 (Exynos 8890) 14LPP 87.00 4.70 18.51 fps/W
Huawei Mate 10 (Kirin 970) 10FF 127.25 7.93 16.04 fps/W
Meizu PRO 5 (Exynos 7420) 14LPE 55.67 3.83 14.54 fps/W
Nexus 6P (Snapdragon 810 v2.1) 20Soc 58.97 4.70 12.54 fps/W
Huawei Mate 8 (Kirin 950) 16FF+ 41.69 3.58 11.64 fps/W
Huawei P9 (Kirin 955) 16FF+ 40.42 3.68 10.98 fps/W
Huawei Mate 9 (Kirin 960) 16FFC 99.16 9.51 10.42 fps/W

Again switching over to the power and efficiency tables, we see that the Snapdragon 855 is posting a ~30% efficiency boost over the Snapdragon 845, all while slightly improving performance.

Overall, I’m very happy with the initial performance and efficiency results of the Snapdragon 855. The S845 was a bit disappointing in some regards because Qualcomm had opted to achieve the higher performance figures by increasing the peak power requirements compared to exemplary thermal characteristics of the Snapdragon 835. The new chip doesn’t quite return to the low power figures of that generation, however it meets it half-way and does represent a notable improvement over the Snapdragon 845.

System Performance - Slightly Underwhelming? Final Thoughts
Comments Locked

132 Comments

View All Comments

  • austonia - Tuesday, January 15, 2019 - link

    Wow that was really impressive, said no one. Apple is like 2 to 3 years ahead and QC isn't gaining any ground. 5G is a big nothingburger. If my Note4 ever burns out I'mma get a fruit-phone next time. Unrivaled performance, better security, LTS for the OS, etc. Rather have an equivalent Pixel but Google isn't even trying from the look of it.
  • eastcoast_pete - Tuesday, January 15, 2019 - link

    @Andrei: Thanks, always appreciate the level of detail in your reviews. Question: QC's concept of 1xbigFast + 3 bigNotsofast + 4 little cores might be especially suited to execute, for example, JavaScript during web browsing, as JS is single-threaded. Did you observe that to be the case?
  • eastcoast_pete - Tuesday, January 15, 2019 - link

    To be more specific: I am also a bit underwhelmed by 855's performance in the web-browsing benchmarks. How much weight does JavaScript performance have in those benchmarks. If JS performance is a significant component of the web benchmarks, the single fast Big core layout would indeed be a bit of a dud.
  • 0iron - Tuesday, January 15, 2019 - link

    Trivia: How many "here" in this article especially at the beginning of sentences? :)
  • Hung - Wednesday, January 16, 2019 - link

    What were the 845 benchmarks run with? Because the Pixel 3/XL has its A75 core clocked at 2.5GHz, while the Galaxy S9's is clocked at 2.7GHz and the LG G7's A75 runs at the stock 2.8GHz. Not a huge difference admittedly, but it definitely skews results slightly if you're comparing the maximum clock for the 855 versus the lower clocked version of the 845.
  • Andrei Frumusanu - Wednesday, January 16, 2019 - link

    Wrong, I don't know where you got the idea they're clocked differently. They're all 2.8.
  • coit - Wednesday, January 16, 2019 - link

    To me the trouble is being stuck with Google.
  • Jredubr - Wednesday, January 16, 2019 - link

    Another year that we'll see Apple's SOCs slaughtering Android's SOCs in raw performance.
    While I'm glad for the efficiency gains, that's far from enough if Qualcomm wants to remain competitive.
    Failing to meet the performance of a SOC that Apple released 1 year and a half ago and sometimes even failing meeting A10 performance just isn't enough for a 7nm SOC.
  • sean8102 - Wednesday, January 16, 2019 - link

    I'm guessing part of it is due to how much of a monopoly they are. When it comes to Android it dominates the market. A few like Samsung, Huawei etc make their own SOC's but that's about it. MediaTek is the only other I can think off but it's rare at least in the US to see them in anything but mid to low range phones and even then its still usually Qualcomn you'll get in that market range.

    From what I've read/seen one of the things that makes Apple's SOC's so fast is the large amount of cache they use. A12 having 8 MB of L3 cache, the 855 has 2 MB. Having so much cache is quite expensive and makes the die size larger which of course increases costs as well. Maybe Qualcomn just isn't getting much demand from OEM's to build such a expensive chip. If they made it and no OEM wanted to pay the price for it they would be stuck holding the bag.
  • Raqia - Wednesday, January 16, 2019 - link

    Apple doesn't have an integrated modem so it has been choosing to use that extra space for beefy, 7-wide, die space hungry CPUs and caches. Although they bench well and have world leading efficiency, those CPUs draw too much current for the small batteries that come with an iPhone and lead to the controversial and unannounced throttling they decided to enact through iOS updates to preserve battery longevity. An on die modem also saves consumers money in the end from lower packaging cost and simpler PCB layouts.

Log in

Don't have an account? Sign up now