Stock CPU Performance: Office Tests

The Office test suite is designed to focus around more industry standard tests that focus on office workflows, system meetings, some synthetics, but we also bundle compiler performance in with this section. For users that have to evaluate hardware in general, these are usually the benchmarks that most consider.

All of our benchmark results can also be found in our benchmark engine, Bench.

3DMark Physics: In-Game Physics Compute

Alongside PCMark is 3DMark, Futuremark’s (UL’s) gaming test suite. Each gaming tests consists of one or two GPU heavy scenes, along with a physics test that is indicative of when the test was written and the platform it is aimed at. The main overriding tests, in order of complexity, are Ice Storm, Cloud Gate, Sky Diver, Fire Strike, and Time Spy.

Some of the subtests offer variants, such as Ice Storm Unlimited, which is aimed at mobile platforms with an off-screen rendering, or Fire Strike Ultra which is aimed at high-end 4K systems with lots of the added features turned on. Time Spy also currently has an AVX-512 mode (which we may be using in the future).

For our tests, we report in Bench the results from every physics test, but for the sake of the review we keep it to the most demanding of each scene: Ice Storm Unlimited, Cloud Gate, Sky Diver, Fire Strike Ultra, and Time Spy.

3DMark Physics - Ice Storm Unlimited3DMark Physics - Cloud Gate3DMark Physics - Sky Diver3DMark Physics - Fire Strike Ultra3DMark Physics - Time Spy

In all tests, at fixed frequency, the processors act identical, however at stock frequencies that Kaby Lake chip just has more headroom to push.

GeekBench4: Synthetics

A common tool for cross-platform testing between mobile, PC, and Mac, GeekBench 4 is an ultimate exercise in synthetic testing across a range of algorithms looking for peak throughput. Tests include encryption, compression, fast Fourier transform, memory operations, n-body physics, matrix operations, histogram manipulation, and HTML parsing.

I’m including this test due to popular demand, although the results do come across as overly synthetic, and a lot of users often put a lot of weight behind the test due to the fact that it is compiled across different platforms (although with different compilers).

We record the main subtest scores (Crypto, Integer, Floating Point, Memory) in our benchmark database, but for the review we post the overall single and multi-threaded results.

Geekbench 4 - ST OverallGeekbench 4 - MT Overall

Stock CPU Performance: Rendering Tests Stock CPU Performance: Encoding Tests
Comments Locked

129 Comments

View All Comments

  • eva02langley - Sunday, January 27, 2019 - link

    Even better...

    https://youtu.be/osSMJRyxG0k?t=1220
  • AntonErtl - Sunday, January 27, 2019 - link

    Great Article! The title is a bit misleading given that it is much more than just a review. I found the historical perspective of the Intel processes most interesting: Other reporting often just reports on whatever comes out of the PR department of some company, and leaves the readers to compare for themselves with other reports; better reporting highlights some of the contradictions; but rarely do we se such a pervasive overview.

    The 8121U would be interesting to me to allow playing with AVX512, but the NUC is too expensive for me for that purpose, and I can wait until AMD or Intel provide it in a package with better value for money.
  • RamIt - Sunday, January 27, 2019 - link

    Need gaming benches. This would make a great cs:s laptop for my daughter to game with me on.
  • Byte - Monday, January 28, 2019 - link

    Cannonlake, 2019's Broadwell.
  • f4tali - Monday, January 28, 2019 - link

    I can't believe I read this whole review from start to finish...
    And all the comments...
    And let it sink in for over 24hrs...

    But somehow my main takeaway is that 10nm is Intel's biggest graphics snafu yet.

    (Well THAT and the fact you guys only have one Steam account!)
    ;)
  • NikosD - Monday, January 28, 2019 - link

    @Ian Cutress
    Great article, it's going to become all-time classic and kudos for mentioning semiaccurate and Charlie for his work and inside information (and guts)

    But really, how many days, weeks or even months did it take to finish it ?
  • bfonnes - Monday, January 28, 2019 - link

    RIP Intel
  • CharonPDX - Monday, January 28, 2019 - link

    Insane to think that there have been as many 14nm "generations" as there were "Core architecture" generations before 14nm.
  • ngazi - Tuesday, January 29, 2019 - link

    Windows is snappy because there is no graphics switching. Any machine with the integrated graphics completely off is snappier.
  • Catalina588 - Wednesday, January 30, 2019 - link

    @Ian, This was a valuable article and it is clipped to Evernote. Thanks!

    Without becoming Seeking Alpha, you could add another dimension or two to the history and future of 10nm: cost per transistor and amortizing R&D costs. At Intel's November 2013 investor meeting, William Holt strongly argued that Intel would deliver the lowest cost per transistor (slide 13). Then-CFO Stacey Smith and other execs also touted this line for many quarters. But as your article points out, poor yields and added processing steps make 10nm a more expensive product than the 14nm++ we see today. How will that get sold and can Intel improve the margins over the life of 10nm?

    Then there's amortizing the R&D costs. Intel has two independent design teams in Oregon and Israel. Each team in the good-old tick-tock days used to own a two-year process node and new microarchitecture. The costs for two teams over five-plus years without 10nm mainstream products yet is huge--likely hundreds of millions of dollars. My understanding is that Intel, under general accounting rules, has to write off the R&D expense over the useful life of the 10nm node, basically on a per chip basis. Did Intel start amortizing 10nm R&D with the "revenue" for Cannon Lake starting in 2017, or is all of the accrued R&D yet to hit the income statement? Wish I knew.

    Anyway, it sure looks to me like we'll be looking back at 10nm in the mid-2020s as a ten-year lifecycle. A big comedown from a two-year TickTock cycle.

Log in

Don't have an account? Sign up now