Power Management Features

Real-world client storage workloads leave SSDs idle most of the time, so the active power measurements presented earlier in this review only account for a small part of what determines a drive's suitability for battery-powered use. Especially under light use, the power efficiency of a SSD is determined mostly be how well it can save power when idle.

For many NVMe SSDs, the closely related matter of thermal management can also be important. M.2 SSDs can concentrate a lot of power in a very small space. They may also be used in locations with high ambient temperatures and poor cooling, such as tucked under a GPU on a desktop motherboard, or in a poorly-ventilated notebook.

ADATA XPG SX8200 and GAMMIX S11
NVMe Power and Thermal Management Features
Controller Silicon Motion SM2262
Firmware SX8200: SVN105
GAMMIX S11: SVN139B
NVMe
Version
Feature Status
1.0 Number of operational (active) power states 3
1.1 Number of non-operational (idle) power states 2
Autonomous Power State Transition (APST) Supported
1.2 Warning Temperature 70 °C
Critical Temperature 80 °C
1.3 Host Controlled Thermal Management Supported
 Non-Operational Power State Permissive Mode Not Supported

Our samples of the ADATA XPG SX8200 use an older firmware revision than the GAMMIX S11 sample, but the power and thermal management features are the same between the two versions. ADATA's first generation of NVMe drives using the SM2260 controller didn't support Autonomous Power State Transitions, so in practice their idle power states would usually go completely unused. The warning and critical temperature thresholds are also 8 °C higher than on the SX8000.

The new drives with the SM2262 controller not only make the idle power states usable out of the box with most operating systems, they have significantly improved those idle power states: PS3 consumption has gone from 70mW to 45mW and the transition latencies are about an order of magnitude faster. (The SX7000/GAMMIX S10 firmware actually advertised even faster transitions, but without APST support that hardly matters.)

ADATA XPG SX8200 and GAMMIX S11
NVMe Power States
Controller Silicon Motion SM2262
Firmware SX8200: SVN105
GAMMIX S11: SVN139B
Power
State
Maximum
Power
Active/Idle Entry
Latency
Exit
Latency
PS 0 9 W Active - -
PS 1 4.6 W Active - -
PS 2 3.8 W Active - -
PS 3 45 mW Idle 2 ms 2 ms
PS 4 4 mW Idle 6 ms 8 ms

Note that the above tables reflect only the information provided by the drive to the OS. The power and latency numbers are often very conservative estimates, but they are what the OS uses to determine which idle states to use and how long to wait before dropping to a deeper idle state.

Idle Power Measurement

SATA SSDs are tested with SATA link power management disabled to measure their active idle power draw, and with it enabled for the deeper idle power consumption score and the idle wake-up latency test. Our testbed, like any ordinary desktop system, cannot trigger the deepest DevSleep idle state.

Idle power management for NVMe SSDs is far more complicated than for SATA SSDs. NVMe SSDs can support several different idle power states, and through the Autonomous Power State Transition (APST) feature the operating system can set a drive's policy for when to drop down to a lower power state. There is typically a tradeoff in that lower-power states take longer to enter and wake up from, so the choice about what power states to use may differ for desktop and notebooks.

We report two idle power measurements. Active idle is representative of a typical desktop, where none of the advanced PCIe link or NVMe power saving features are enabled and the drive is immediately ready to process new commands. The idle power consumption metric is measured with PCIe Active State Power Management L1.2 state enabled and NVMe APST enabled if supported.

Active Idle Power Consumption (No LPM)Idle Power Consumption

The active idle power consumption of the ADATA SX8200 and GAMMIX S11 is in line with other SM2262 SSDs, and about 30% lower than the SM2260-based predecessors. Thanks to the addition of NVMe APST support, the newer drives actually get to use their deepest idle states, putting them around 10mW compared to the 600+ mW used by their predecessors.

Idle Wake-Up Latency

Now that deep sleep states are actually being used, it's a given that the newer ADATA drives have non-trivial wake-up latencies. The SX8200 and GAMMIX S11 are relatively slow to wake up compared to the drives that idle in the 70-100mW range instead of the 10mW we get from the SM2262. However, the new ADATA drives are about 10ms faster to wake up than the other SM2262 drives we've tested.

Mixed Read/Write Performance Conclusion
Comments Locked

19 Comments

View All Comments

  • Pewzor - Tuesday, May 14, 2019 - link

    FuzeDrive (aka Virtual SSD) is used by Dell EMC data center, people saying you lose FuzeDrive you lose everything is just full of it. FuzeDrive is just Virtual SSD (by Enmotus) rebranded for AMD use.
    It works like Intel Rapid Storage except VSSD is data center proven.
    There's a very little chance for total catastrophic failure to happen, which could happen to IRST as well.
    You will lose your data when multiple drives fail at the same time, which is true even for raid 1 and raid 5.
    VSSD/FuzeDrive when it pushes data across different devices it creates a mirror in (duplicates in shadow file), and the duplicates are not purged until after the data is verified to complete copying to the new destination drive.
    Only time this happens is when file is copied the destination drive fails the instant the copy is verified then the source device fails and breaks the shadow image.
    Technically even a 3 drive raid 5 array could fail catastrophically if all 3 drives failed.
  • eddieobscurant - Thursday, July 26, 2018 - link

    I think the drives deserved an award.
  • Samus - Thursday, July 26, 2018 - link

    Double sided :(

    Would be good for a notebook considering the power profile and price. The 980 EVO is just dangerous in a mobile device so I've been sticking to the WD Black, which is still pretty expensive.
  • wolve - Thursday, July 26, 2018 - link

    FYI this SSD is on sale for $100 on Rakuten. Got it a few weeks ago when they had a similar deal.
    https://www.rakuten.com/shop/adata/product/ASX8200...
  • SanX - Saturday, July 28, 2018 - link

    This drive was completely destroyed by the Destroyer still the author and the crowd sing the Dithyrambs to it.
  • gglaw - Saturday, August 11, 2018 - link

    the vast majority of home users could not even emulate the Destroyer tests if they tried and it has no bearing on the actual user experience. It is there mostly for academic purposes - did you even read the details of what the Destroyer test runs? For even an advanced home techie, this drive's price/performance is most likely the best that currently exists, especially when it goes on sale for $95 for the ~500GB model. That's not much higher than a budget SATA drive for identical performance to a 970 EVO or WD Black for home use. It's been on sale for $95-$100 3X now that I'm aware of, not only should the author give it a positive review, for the segment it addresses I feel it should be even given Editor's Choice. And yes I have 2 of these so not just making up opinions based on reading tests that I don't understand. There is absolutely no visible difference between this, the 960 EVO and 970 EVO which I have all running in the same LAN room.
  • Wolfclaw - Tuesday, July 31, 2018 - link

    Based on review, I purchased the 240GB SX8200 for new Ryzen build, it came yesterday, now just waiting for the motherboard ... running out of patience :(
  • Wolfclaw - Saturday, August 4, 2018 - link

    OK, got one for my x470 and it is fast, would I notice the difference to say a Samsung, I doubt it. 4 seconds form boot to W10 desktop, I have a large Outlook data footprint and it opens and is ready a lot quicker than my old SSD, Visual Studio is extremely responsive with it.
  • a_pete - Friday, August 31, 2018 - link

    I think there's an issue in the power consumption information for the Optane 800p.

    It's being listed here (and on other charts) as using 0.8W while active, but on the review page it was actually using 3.5W active. This is messing up all the Power efficiency charts.

    Thanks!

Log in

Don't have an account? Sign up now