Conclusion

The Optane SSD 800p is the closest that Intel has come to offering a 3D XPoint-based product for the mainstream consumer market. Unlike the Optane Memory M.2, the 800p is available in capacities that allow it to be used as ordinary storage. Unlike the premium Optane SSD 900p, the 800p uses a form factor that is broadly supported by both desktops and notebooks, and the power consumption doesn't rule out use on battery power.

We had trouble getting the idle power management on the 800p to work with our testbed, but there's no question that the 800p is one of the most efficient SSDs under load. Its high performance at low queue depths allows the 800p to complete real-world tests as quickly as the fastest flash-based SSDs, but the power consumption of the 800p doesn't climb as high.

The Optane SSD 800p uses a PCIe 3 x2 interface, which is becoming increasingly common this year as more low-end NVMe SSDs show up. The Optane SSD 800p definitely doesn't belong in that category, but the two-lane link does cap throughput relative to the high-end NVMe SSDs that use a four-lane link. Fortunately, this bottleneck doesn't matter much to the 800p. The key strength of Optane products is their low latency, allowing high performance at low queue depths where total throughput usually doesn't come close to saturating a fast PCIe link. The PCIe x2 link used by the 800p does nothing to diminish its latency advantage.

NVMe SSD Price Comparison
  58GB 118-128GB 240-280GB 480-512GB
Intel Optane SSD 800p $129.00 (222¢/GB) $199.00 (169¢/GB)    
Intel Optane SSD 900p     $379.00 (135¢/GB) $599.00 (125¢/GB)
Intel SSD 760p   $69.99 (55¢/GB) $99.99 (39¢/GB) $272.43 (53¢/GB)
Samsung 960 PRO       $299.99 (59¢/GB)
Samsung 960 EVO     $119.99 (48¢/GB) $229.99 (46¢/GB)
Plextor M9Pe     $127.38 (50¢/GB) $215.59 (42¢/GB)
WD Black     $99.99 (39¢/GB) $192.95 (38¢/GB)
MyDigitalSSD SBX   $59.99 (47¢/GB) $94.99 (37¢/GB) $159.99 (31¢/GB)

The pricing on the Optane SSD 800p is a disappointment, but not entirely surprising. Small SSDs tend to have a higher price per GB than larger models. The 800p is more expensive on a per GB basis than the premium Optane SSD 900p, even though the latter uses a much larger and more expensive controller. So while the technical merits of the 800p may make it look like something approaching a mass-market product, it is actually the most expensive consumer SSD on the market.

If Intel could get the price down to the range of high-end MLC flash based drives like the Samsung 960 PRO, the 800p might be compelling for some users who are sure they don't need high capacities or who already have other SSDs to use as secondary storage with an Optane boot drive. Enthusiasts who don't want to jump all the way to the 900p or who only have M.2 slots to spare can get most of the performance benefits from the lesser Optane drive, and high-performance flash-based NVMe drives aren't available in low capacities.

For most users, the 800p still doesn't make sense to use as the only drive in a system. The 58GB model pretty much requires you to have another drive in your system, either another SSD or a hard drive being cached by the 800p (in which case, why not get the cheaper Optane Memory?). The 118GB model can more easily serve as the sole drive in a system; my personal laptop only has 128GB, and it serves most of my needs except for photo organizing and editing (for that, I have a NAS). But when a decent entry-level NVMe SSD can provide four times the capacity for about the same price, it is hard to choose the smaller drive.

With today's prices, I would almost always choose a ~500GB 3D TLC SSD over the 118GB Optane SSD 800p. At 500GB and up, even the latest SSDs with 512Gb 3D TLC NAND don't really suffer the performance penalties of being too small, so the Optane SSD 800p's performance isn't a huge boost. It's always less of a hassle when your primary drive is big enough to hold most or all of your data, and drives like the Samsung 960 EVO or Intel SSD 760p (limited availability at the moment) are fast enough.

We performed some tests of the Optane SSD 800p in RAID using Intel's Virtual RAID on CPU feature, available on their latest enthusiast and server platforms but not the mainstream desktop platform. VROC clearly adds some software overhead that subtracts from the latency advantage that is the strongest selling point for Optane SSDs. At high queue depths such as those generated by synthetic benchmarks or enterprise workloads, that overhead may be overcome by the performance advantages of a four-drive RAID-0. But for more typical interactive desktop workloads, VROC does not provide a net improvement in storage performance when used with the Optane SSD 800p. There are some peripheral benefits to performance consistency compared to a single 800p SSD, but they are unimportant. For users seeking Optane-class performance with higher capacity than the 800p, the Optane SSD 900p will be more cost effective and offer better performance.

 

Power Management
Comments Locked

116 Comments

View All Comments

  • beginner99 - Friday, March 9, 2018 - link

    Exactly. Anything below 240GB is not a workable solution nowadays. I remember my first intel g2 80GB. constant micro-managing where to put files and which app gets to be on the ssd and which not. Or for my parents I back then got them a 64 gb drive. When the win 10 update came it was not possible to update because updating windows 7 to 10 requires more than 64gb.
  • Calin - Friday, March 9, 2018 - link

    I do use a 120GB SSD on my desktop, and it works good enough with a 2TB hard drive. I even use a 90% partition, as early SSDs had performance problems when close to full.
  • sharath.naik - Thursday, March 8, 2018 - link

    was rapid mode tried on Samsung drives?. not sure with a large enough ram the difference in random performance would matter that much.
  • Billy Tallis - Thursday, March 8, 2018 - link

    Half the test suite is run on Linux, so Rapid Mode isn't an option. And in general, I don't approve of third-party software that second-guesses the decisions made by core parts of the OS like the virtual memory system—especially not when those tools put user data at risk without being absolutely clear about what they're really doing.
  • eddieobscurant - Friday, March 9, 2018 - link

    Billy , do you have any news on micron's QuantX ?
  • Dragonstongue - Thursday, March 8, 2018 - link

    Intel and Micron (IM) joint venture, Intel "branded" as Optane either way is 3D XPoint..far as I understood Micron decided to "drop it" so is Intel going about it all on their own, was Unity Semiconductors who was bought out by Rambus 2012, that likely not a good thing either (they) RB seem more prevalent to sue people vs making a tangible product everyone wants (IMO)

    the above 3d x, optane whatever seems like another thing that "on paper" seems like would be a decent thing, but, the price factor puts it into a "there are better options available" that offer similar performance or at the very least substantially better $/gb value.

    I think that is what Micron was seeing, no real way to get the "value" out of it without charging too high a price to make it market worthwhile for them and consumer, Intel is their own fish and they always (again IMO) charge substantial price for a "do we really need this" type product (like Nvidia) cut corners or cut down performance that could have been, but still want top dollar, and "next year" come out with a more full fat version (that should have been the previous year) and want more $ for the "upgrade" planned obsolescence/upgrade path.

    for a loose example, Samsung 950 EVO M.2 250gb (pro faster but ofc more pricey)
    I see available for ~$160 CAD
    read/write 3200/1900
    QD1 Thread
    Random Read: 14,000 IOPS
    Random Write: 50,000 IOPS
    QD32 Thread
    Random Read: 380,000 IOPS
    Random Write: 360,000 IOPS

    their "power draw" and latency do not seem to be praiseworth either, so it still leads me to the same question "why bother"...also, I really wish M.2 drives were maybe a toned down speed version so it could be "less expensive" here I thought that by going smaller and smaller node and going from SLC to MLC to 3d etc price would drop and drop while performance would go up and up, seems that the only real thing that has changed is the less on the "board" the further they crank the speed give smaller capacity and increase the price *facepalm*
  • Lolimaster - Friday, March 9, 2018 - link

    10x less latency
    15x faster in QD1r
    4X faster in QD1w
  • Adramtech - Saturday, March 10, 2018 - link

    Micron has no plans to drop QuantX and are providing an update at their May tech conference.
  • shabby - Thursday, March 8, 2018 - link

    Leave it to intel to artificially cripple a product on purpose, who does this?
  • boeush - Thursday, March 8, 2018 - link

    Seems to me, if you really want supper-fast, low-latency high-endurance random read/write at low QD and capacities ~128GB for a lot of $$$, then just get a bunch of RAM and a UPS (to prevent data loss in case of power failure.). No SSD technology will ever beat good ol' RAM in terms of performance. In this case, for mass storage you just need fast sequential reads and writes so you can quickly map your filesystem to/from RAM on system startup/shutdown, respectively...

    In light of which, until Intel comes out with their next-gen Optane at 512 GB+ capacities in M.2 package, the current product feels like a solution on search of a problem

Log in

Don't have an account? Sign up now