AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in daily usage, but with the idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here. As with the ATSB Heavy test, this test is run with the drive both freshly erased and empty, and after filling the drive with sequential writes.

ATSB - Light (Data Rate)

The Light test allows the flash-based SSDs to make the most of their write caching throughout the test, so even the 900p is surpassed by the Samsung NVMe SSDs while the 800p ranks with the budget NVMe drives. When the drives are full and the flash-based SSDs get bogged down with garbage collection, the 900p comes out ahead but the 800p still trails behind the Samsung 960 PRO. The VROC configuration look especially poor in terms of average data rate, and the RAID-5 performance is surprisingly low.

ATSB - Light (Average Latency)ATSB - Light (99th Percentile Latency)

The Optane SSD 800p scores in the middle tier of SSDs for average latency on the Light test, and VROC RAID is no help here. VROC does help with the 99th percentile latencies, but without it the 800p looks like a low-end drive that merely doesn't have garbage collection problems.

ATSB - Light (Average Read Latency)ATSB - Light (Average Write Latency)

The average read latencies from the 800p are almost twice as high as those from the 900p, and VROC's overhead only makes it worse. The average write latencies of the 900p aren't as good as the best flash-based SSDs, and the write latency of the 800p is well over twice that of the 900p.

ATSB - Light (99th Percentile Read Latency)ATSB - Light (99th Percentile Write Latency)

The 99th percentile latency scores from the 800p are not great, but at least the drives perform just as well when full. Small flash-based drives are the most heavily affected when constant garbage collection becomes necessary.

ATSB - Light (Power)

The Light test is a fairly short run with any of these drives, but the 800p still manages to return extremely good power usage numbers that are well ahead of any flash-based NVMe SSD.

AnandTech Storage Bench - Heavy Random Performance
Comments Locked

116 Comments

View All Comments

  • beginner99 - Friday, March 9, 2018 - link

    Exactly. Anything below 240GB is not a workable solution nowadays. I remember my first intel g2 80GB. constant micro-managing where to put files and which app gets to be on the ssd and which not. Or for my parents I back then got them a 64 gb drive. When the win 10 update came it was not possible to update because updating windows 7 to 10 requires more than 64gb.
  • Calin - Friday, March 9, 2018 - link

    I do use a 120GB SSD on my desktop, and it works good enough with a 2TB hard drive. I even use a 90% partition, as early SSDs had performance problems when close to full.
  • sharath.naik - Thursday, March 8, 2018 - link

    was rapid mode tried on Samsung drives?. not sure with a large enough ram the difference in random performance would matter that much.
  • Billy Tallis - Thursday, March 8, 2018 - link

    Half the test suite is run on Linux, so Rapid Mode isn't an option. And in general, I don't approve of third-party software that second-guesses the decisions made by core parts of the OS like the virtual memory system—especially not when those tools put user data at risk without being absolutely clear about what they're really doing.
  • eddieobscurant - Friday, March 9, 2018 - link

    Billy , do you have any news on micron's QuantX ?
  • Dragonstongue - Thursday, March 8, 2018 - link

    Intel and Micron (IM) joint venture, Intel "branded" as Optane either way is 3D XPoint..far as I understood Micron decided to "drop it" so is Intel going about it all on their own, was Unity Semiconductors who was bought out by Rambus 2012, that likely not a good thing either (they) RB seem more prevalent to sue people vs making a tangible product everyone wants (IMO)

    the above 3d x, optane whatever seems like another thing that "on paper" seems like would be a decent thing, but, the price factor puts it into a "there are better options available" that offer similar performance or at the very least substantially better $/gb value.

    I think that is what Micron was seeing, no real way to get the "value" out of it without charging too high a price to make it market worthwhile for them and consumer, Intel is their own fish and they always (again IMO) charge substantial price for a "do we really need this" type product (like Nvidia) cut corners or cut down performance that could have been, but still want top dollar, and "next year" come out with a more full fat version (that should have been the previous year) and want more $ for the "upgrade" planned obsolescence/upgrade path.

    for a loose example, Samsung 950 EVO M.2 250gb (pro faster but ofc more pricey)
    I see available for ~$160 CAD
    read/write 3200/1900
    QD1 Thread
    Random Read: 14,000 IOPS
    Random Write: 50,000 IOPS
    QD32 Thread
    Random Read: 380,000 IOPS
    Random Write: 360,000 IOPS

    their "power draw" and latency do not seem to be praiseworth either, so it still leads me to the same question "why bother"...also, I really wish M.2 drives were maybe a toned down speed version so it could be "less expensive" here I thought that by going smaller and smaller node and going from SLC to MLC to 3d etc price would drop and drop while performance would go up and up, seems that the only real thing that has changed is the less on the "board" the further they crank the speed give smaller capacity and increase the price *facepalm*
  • Lolimaster - Friday, March 9, 2018 - link

    10x less latency
    15x faster in QD1r
    4X faster in QD1w
  • Adramtech - Saturday, March 10, 2018 - link

    Micron has no plans to drop QuantX and are providing an update at their May tech conference.
  • shabby - Thursday, March 8, 2018 - link

    Leave it to intel to artificially cripple a product on purpose, who does this?
  • boeush - Thursday, March 8, 2018 - link

    Seems to me, if you really want supper-fast, low-latency high-endurance random read/write at low QD and capacities ~128GB for a lot of $$$, then just get a bunch of RAM and a UPS (to prevent data loss in case of power failure.). No SSD technology will ever beat good ol' RAM in terms of performance. In this case, for mass storage you just need fast sequential reads and writes so you can quickly map your filesystem to/from RAM on system startup/shutdown, respectively...

    In light of which, until Intel comes out with their next-gen Optane at 512 GB+ capacities in M.2 package, the current product feels like a solution on search of a problem

Log in

Don't have an account? Sign up now