Conclusion

The Optane SSD 800p is the closest that Intel has come to offering a 3D XPoint-based product for the mainstream consumer market. Unlike the Optane Memory M.2, the 800p is available in capacities that allow it to be used as ordinary storage. Unlike the premium Optane SSD 900p, the 800p uses a form factor that is broadly supported by both desktops and notebooks, and the power consumption doesn't rule out use on battery power.

We had trouble getting the idle power management on the 800p to work with our testbed, but there's no question that the 800p is one of the most efficient SSDs under load. Its high performance at low queue depths allows the 800p to complete real-world tests as quickly as the fastest flash-based SSDs, but the power consumption of the 800p doesn't climb as high.

The Optane SSD 800p uses a PCIe 3 x2 interface, which is becoming increasingly common this year as more low-end NVMe SSDs show up. The Optane SSD 800p definitely doesn't belong in that category, but the two-lane link does cap throughput relative to the high-end NVMe SSDs that use a four-lane link. Fortunately, this bottleneck doesn't matter much to the 800p. The key strength of Optane products is their low latency, allowing high performance at low queue depths where total throughput usually doesn't come close to saturating a fast PCIe link. The PCIe x2 link used by the 800p does nothing to diminish its latency advantage.

NVMe SSD Price Comparison
  58GB 118-128GB 240-280GB 480-512GB
Intel Optane SSD 800p $129.00 (222¢/GB) $199.00 (169¢/GB)    
Intel Optane SSD 900p     $379.00 (135¢/GB) $599.00 (125¢/GB)
Intel SSD 760p   $69.99 (55¢/GB) $99.99 (39¢/GB) $272.43 (53¢/GB)
Samsung 960 PRO       $299.99 (59¢/GB)
Samsung 960 EVO     $119.99 (48¢/GB) $229.99 (46¢/GB)
Plextor M9Pe     $127.38 (50¢/GB) $215.59 (42¢/GB)
WD Black     $99.99 (39¢/GB) $192.95 (38¢/GB)
MyDigitalSSD SBX   $59.99 (47¢/GB) $94.99 (37¢/GB) $159.99 (31¢/GB)

The pricing on the Optane SSD 800p is a disappointment, but not entirely surprising. Small SSDs tend to have a higher price per GB than larger models. The 800p is more expensive on a per GB basis than the premium Optane SSD 900p, even though the latter uses a much larger and more expensive controller. So while the technical merits of the 800p may make it look like something approaching a mass-market product, it is actually the most expensive consumer SSD on the market.

If Intel could get the price down to the range of high-end MLC flash based drives like the Samsung 960 PRO, the 800p might be compelling for some users who are sure they don't need high capacities or who already have other SSDs to use as secondary storage with an Optane boot drive. Enthusiasts who don't want to jump all the way to the 900p or who only have M.2 slots to spare can get most of the performance benefits from the lesser Optane drive, and high-performance flash-based NVMe drives aren't available in low capacities.

For most users, the 800p still doesn't make sense to use as the only drive in a system. The 58GB model pretty much requires you to have another drive in your system, either another SSD or a hard drive being cached by the 800p (in which case, why not get the cheaper Optane Memory?). The 118GB model can more easily serve as the sole drive in a system; my personal laptop only has 128GB, and it serves most of my needs except for photo organizing and editing (for that, I have a NAS). But when a decent entry-level NVMe SSD can provide four times the capacity for about the same price, it is hard to choose the smaller drive.

With today's prices, I would almost always choose a ~500GB 3D TLC SSD over the 118GB Optane SSD 800p. At 500GB and up, even the latest SSDs with 512Gb 3D TLC NAND don't really suffer the performance penalties of being too small, so the Optane SSD 800p's performance isn't a huge boost. It's always less of a hassle when your primary drive is big enough to hold most or all of your data, and drives like the Samsung 960 EVO or Intel SSD 760p (limited availability at the moment) are fast enough.

We performed some tests of the Optane SSD 800p in RAID using Intel's Virtual RAID on CPU feature, available on their latest enthusiast and server platforms but not the mainstream desktop platform. VROC clearly adds some software overhead that subtracts from the latency advantage that is the strongest selling point for Optane SSDs. At high queue depths such as those generated by synthetic benchmarks or enterprise workloads, that overhead may be overcome by the performance advantages of a four-drive RAID-0. But for more typical interactive desktop workloads, VROC does not provide a net improvement in storage performance when used with the Optane SSD 800p. There are some peripheral benefits to performance consistency compared to a single 800p SSD, but they are unimportant. For users seeking Optane-class performance with higher capacity than the 800p, the Optane SSD 900p will be more cost effective and offer better performance.

 

Power Management
Comments Locked

116 Comments

View All Comments

  • Reflex - Saturday, March 10, 2018 - link

    I also think people forget how crappy & expensive gen1 and 2 SSD's were.
  • Drazick - Friday, March 9, 2018 - link

    We really need those in U2 / SATA Express form.
    Desktop users shouldn't use M2 with all its thermal limitations.
  • jabber - Friday, March 9, 2018 - link

    Whichever connector you use or whatever the thermals, once you go above 600MBps the real world performance difference is very hard to tell in most cases. We just need SATA4 and we can dump all these U2/SATA Express sockets. M.2 for compactness and SATA4 for everything else non Enterprise. Done.
  • Reflex - Friday, March 9, 2018 - link

    U2 essentially is next gen SATA. There is no SATA4 on the way. SATA is at this point an 18 year old specification ripe for retirement. There is also nothing wrong with M.2 even in desktops. Heat spreaders aren't a big deal in that scenario. All that's inside a SATA drive is the same board you'd see in M.2 form factor more or less.
  • leexgx - Saturday, March 10, 2018 - link

    apart from that your limited to 0-2 slots per board (most come with 6 SATA ports)

    i agree that a newer SATA that support NVME over it be nice but U2 be nice if anyone would adopt it and make the ports become standard and have U2 SSDs
  • jabber - Friday, March 9, 2018 - link

    I am amazed that no one has decided to just do the logical thing and slap a 64GB Flash cache in a 4TB+ HDD and be done with it. One unit and done.
  • iter - Friday, March 9, 2018 - link

    They have, seagate has a hybrid drive, not all that great really.

    The reason is that caching algorithms suck. They are usually FIFO - first in first out, and don't take into account actual usage patterns. Meaning you get good performance only if your work is confined to a data set that doesn't exceed the cache. If you exceed it, it starts bringing in garbage, wearing down the flash over nothing. Go watch a movie, that you are only gonna watch once - it will cache that, because you accessed it. And now you have gigabytes of pointless writes to the cache, displacing data that actually made sense to be cached.

    Which is why I personally prefer to have separate drives rather than cache. Because I know what can benefit from flash and what makes no sense there. Automatic tiering is pathetic, even in crazy expensive enterprise software.
  • jabber - Friday, March 9, 2018 - link

    Yeah I was using SSHD drives when they first came out but 8GB of flash doesn't really cut it. I'm sure after all this time 64GB costs the same as 8GB did back then (plus it would be space enough for several apps and data sets to be retained) and the algorithms will have improved. If Intel thinks caches for HDDs have legs then why not just combine them in one simple package?
  • wumpus - Friday, March 9, 2018 - link

    Presumably, there's no market. People who buy spinning rust are either buying capacity (for media, and using SSD for the rest) or cheaping out and not buying SSDs.

    What surprises me is that drives still include 64MB of DRAM, you would think that companies who bothered to make these drives would have switched to TLC (and pseudo-SLC) for their buffer/caches (writing on power off must be a pain). Good luck finding someone who would pay for the difference.

    Intel managed to shove this tech into the chipsets (presumably a software driver that looked for the hardware flag, similar to RAID) in 2011-2012, but apparently dropped that soon afterward. Too bad, reserving 64GB of flash to cache a harddrive (no idea if you could do this with a RAID array) sounds like something that is still usefull (not that you need the performance, just that the flash is so cheap). Just make sure the cache is set to "write through" [if this kills performance it shouldn't be on rust] to avoid doubling your chances of drive loss. Apparently the support costs weren't worth the bother.
  • leexgx - Saturday, March 10, 2018 - link

    8GB should be plenty for SSHD and there currant generation have cache evic protection (witch i think is 3rd gen) so say a LBA block is read 10 times it will assume that is something you open often or its a system file or a startup item, so 2-3GB of data will not get removed easily (so windows, office, browsers and other startup items will always be in the nand cache) the rest of the caching is dynamic if its had more then 2-4 reads it caches it to the nand

    the current generation SSHDs by seagate (don't know how others do it) its split into 3 sections so has a easy, bit harder and very hard to evict from read cache, as the first gen SSHDs from seagate just defragmenting the drive would end evicting your normal used stuff as any 2 reads would be cached right away that does not happen any more

    if you expect it to make your games load faster you need to look elsewhere, as they are meant to boost commonly used applications and OS and on startup programs but still have the space for storage

    that said i really dislike HDDs as boot drives if they did not cost £55 for a 250gb SSD i put them in for free

Log in

Don't have an account? Sign up now