Benchmarking Performance: CPU Office Tests

The office programs we use for benchmarking aren't specific programs per-se, but industry standard tests that hold weight with professionals. The goal of these tests is to use an array of software and techniques that a typical office user might encounter, such as video conferencing, document editing, architectural modeling, and so on and so forth.

All of our benchmark results can also be found in our benchmark engine, Bench.

Chromium Compile (v56)

Our new compilation test uses Windows 10 Pro, VS Community 2015.3 with the Win10 SDK to compile a nightly build of Chromium. We've fixed the test for a build in late March 2017, and we run a fresh full compile in our test. Compilation is the typical example given of a variable threaded workload - some of the compile and linking is linear, whereas other parts are multithreaded.

Office: Chromium Compile (v56)

For our compile test, it would appear that the extra memory width afforded by the quad-channel memory of Skylake-X can have a direct benefit in compile performance.

PCMark 10

PCMark 10 is the 2017 update to the family favorite, PCMark 8. PCMark 8 has been part of our test bed since the latest update in Q1. For the most part it runs well, although for some processors it doesn’t recognize, some tests will not complete, leading to holes in our benchmark data (there’s also an odd directory quirk in one test that causes issues). The newest version, PCMark 10, is the answer.

The new test is adapted for more 2016/2017 workflows. With the advent of office applications that perform deeper compute tasks, or the wave of online gamers and streamers, the idea behind PCMark 10 is to give a better ‘single number’ result that can provide a comparable metric between systems. Single metrics never tell the whole story, so we’re glad that Futuremark provides a very detailed breakdown of what goes on.

Ganesh’s article on PCMark 10 goes into more detail than I will here, but the ‘Extended Benchmark’ runs through four different sets of tests: Essential, Productivity, Creation and Gaming. Each of these have sub-test results as well, including startup performance, web performance, video conferencing, photo/video editing, spreadsheets, rendering, and physics, which you can find in Bench.

Office: PCMark10-1 Essential Set ScoreOffice: PCMark10-2 Productivity Set ScoreOffice: PCMark10-3 Creation Set ScoreOffice: PCMark10-4 Physics Score

PCMark8: link

Despite originally coming out in 2008/2009, Futuremark has maintained PCMark8 to remain relevant in 2017. On the scale of complicated tasks, PCMark focuses more on the low-to-mid range of professional workloads, making it a good indicator for what people consider 'office' work. We run the benchmark from the commandline in 'conventional' mode, meaning C++ over OpenCL, to remove the graphics card from the equation and focus purely on the CPU. PCMark8 offers Home, Work and Creative workloads, with some software tests shared and others unique to each benchmark set.

Office: PCMark8 Creative (non-OpenCL)Office: PCMark8 Home (non-OpenCL)Office: PCMark8 Work (non-OpenCL)

Benchmarking Performance: CPU Encoding Tests Benchmarking Performance: CPU Legacy Tests
Comments Locked

222 Comments

View All Comments

  • watzupken - Saturday, October 7, 2017 - link

    There are pros and cons of having integrated graphics. It sure takes up a lot of die space, but it is something that allows Intel to sell a lot of chips. Amongst enthusiasts, this is unnecessary, but this group may only represent a small percentage vs corporates that need only decent CPU and no need for fancy graphics. To be honest, Intel could likely have created a 8 core processor easily since the die size is still fairly small for Coffee Lake, but they chose not to. I don't think it is a matter of the graphic that is holding them back.
  • James5mith - Friday, October 6, 2017 - link

    Now to wait for the generation of Intel CPU's with native Thunderbolt3 on-die like Intel announced earlier this year.
  • Zingam - Saturday, October 7, 2017 - link

    Why is that a good thing?
  • ReeZun - Friday, October 6, 2017 - link

    "The difference between the Ryzen 5 1500X and the Core i3-8350K would be interesting, given the extreme thread deficit (12 threads vs 4) between the two."

    The 1500X houses 8 threads (not 12).
  • watzupken - Saturday, October 7, 2017 - link

    The difference between the R5 1500X and i3 8350K goes beyond just the number of threads. The cache is also 2x more on the Ryzen chip. However, the i3 chip have the advantage of being able to reach higher clockspeed. I do agree that this will be an interesting comparison.
  • sweeper765 - Friday, October 6, 2017 - link

    I'm not up to date with current bios versions.
    Is multi-core enhancement still present in z370 motherboards? That would get rid of all those differences in turbo speeds. I know it is technically overclocking but i bet it's a pretty safe procedure without increasing the voltages.

    Also, what's the deal with the 8700? Is it just as good as 8700k (minus 100mhz) if one decides not to overclock? Just trying to gather as many practical facts as i can before formulating an upgrade plan (sandy bridge user hehe )

    This cpu family looks good on specs and benches (maybe the first worthy successor to sandy bridge) but it's not perfect. I hate that Intel decided not to solder, i expect temperatures to soar in the high 80's. Also the current motherboards are somewhat lacking in ports (usb, lan, sata).

    I love my sandy bridge setup though.
    6 1/2 years old and still going strong. Overclocked, cool, stable, silent. With current cpu's you don't get all these points.
    Even if i upgrade i'm not going to touch it.
  • Ian Cutress - Saturday, October 7, 2017 - link

    Is multi-core enhancement still present in z370 motherboards?

    As an option, yes.
    As default? Will vary board to board. You can disable it.
    However we had trouble with one of our boards: disabling MCT/MCE and then enabling XMP caused the CPU to sit at 4.3 GHz all day. Related to a BIOS bug which the vendor updated in a hurry.
  • Jodiuh - Friday, October 6, 2017 - link

    What’s up with those rise of Tomb Raider benchmarks? Am I too seriously believ the i5 7400 is more capable than the 8700K...did I miss the overclocking part?

    Tech reports review much better with results that make sense.
  • peevee - Friday, October 6, 2017 - link

    "Core i5-8600K and the Core i7-8700. These two parts are $50 apart, however the Core i7-8700 has double the threads, +10% raw frequency"

    +10%? Count again.
  • boeush - Friday, October 6, 2017 - link

    Regarding most normal/gaming scenarios, I'm wondering with the 8700/k whether one couldn't get an even better performance by disabling hyperthreading in the UEFI.

    That would still yield 6 threads, but now ostensibly with a full 2 MB of L3 per thread. Plus, lower power per core (due to lower resource utilization) might mean more thermal headroom and higher overall sustained frequencies.

    So you'd get maximum-possible single-thread performance while still being able to run 6-wide SMT (which, under most normal usage, isn't even a constraint worth noting...)

    Amirite?

Log in

Don't have an account? Sign up now