Benchmarking Performance: CPU Office Tests

The office programs we use for benchmarking aren't specific programs per-se, but industry standard tests that hold weight with professionals. The goal of these tests is to use an array of software and techniques that a typical office user might encounter, such as video conferencing, document editing, architectural modeling, and so on and so forth.

All of our benchmark results can also be found in our benchmark engine, Bench.

Chromium Compile (v56)

Our new compilation test uses Windows 10 Pro, VS Community 2015.3 with the Win10 SDK to compile a nightly build of Chromium. We've fixed the test for a build in late March 2017, and we run a fresh full compile in our test. Compilation is the typical example given of a variable threaded workload - some of the compile and linking is linear, whereas other parts are multithreaded.

Office: Chromium Compile (v56)

For our compile test, it would appear that the extra memory width afforded by the quad-channel memory of Skylake-X can have a direct benefit in compile performance.

PCMark 10

PCMark 10 is the 2017 update to the family favorite, PCMark 8. PCMark 8 has been part of our test bed since the latest update in Q1. For the most part it runs well, although for some processors it doesn’t recognize, some tests will not complete, leading to holes in our benchmark data (there’s also an odd directory quirk in one test that causes issues). The newest version, PCMark 10, is the answer.

The new test is adapted for more 2016/2017 workflows. With the advent of office applications that perform deeper compute tasks, or the wave of online gamers and streamers, the idea behind PCMark 10 is to give a better ‘single number’ result that can provide a comparable metric between systems. Single metrics never tell the whole story, so we’re glad that Futuremark provides a very detailed breakdown of what goes on.

Ganesh’s article on PCMark 10 goes into more detail than I will here, but the ‘Extended Benchmark’ runs through four different sets of tests: Essential, Productivity, Creation and Gaming. Each of these have sub-test results as well, including startup performance, web performance, video conferencing, photo/video editing, spreadsheets, rendering, and physics, which you can find in Bench.

Office: PCMark10-1 Essential Set ScoreOffice: PCMark10-2 Productivity Set ScoreOffice: PCMark10-3 Creation Set ScoreOffice: PCMark10-4 Physics Score

PCMark8: link

Despite originally coming out in 2008/2009, Futuremark has maintained PCMark8 to remain relevant in 2017. On the scale of complicated tasks, PCMark focuses more on the low-to-mid range of professional workloads, making it a good indicator for what people consider 'office' work. We run the benchmark from the commandline in 'conventional' mode, meaning C++ over OpenCL, to remove the graphics card from the equation and focus purely on the CPU. PCMark8 offers Home, Work and Creative workloads, with some software tests shared and others unique to each benchmark set.

Office: PCMark8 Creative (non-OpenCL)Office: PCMark8 Home (non-OpenCL)Office: PCMark8 Work (non-OpenCL)

Benchmarking Performance: CPU Encoding Tests Benchmarking Performance: CPU Legacy Tests
Comments Locked

222 Comments

View All Comments

  • zuber - Thursday, October 5, 2017 - link

    I disagree, he mentioned pretty much all the info you need to know about the CPU.

    The choice of GPU is hardly even relevant to CPU tests anymore. For gaming performance my 6 year old i7-2600K is neck and neck (or faster in some cases) than this new crop of CPUs.
  • mapesdhs - Friday, October 6, 2017 - link

    And if you do need more cores you can always move sideways to a very low cost SB-E or IB-EP. I built a 4.8GHz 2700K system for a friend two years ago, am upgrading it soon to a 3930K at the same clock, replacing the M4E mbd with an R4E, swapping the RAM kits (2x8GB for 4x4GB, both 2400MHz), total cost 200 UKP. 8) And the both mbds now have the option of booting from NVMe.

    Newer CPUs can have a distinct advantage for some types of 1080p gaming, but with newer GPUs the frame rates are usually so high it really doesn't matter. Move up the scale of resolution/complexity and quickly it becomes apparent there's plenty of life left in SB, etc. zuber, at what clock are you running your 2600K? Also note that P67/Z68 can benefit aswell from faster RAM if you're only using 1600 or less atm.
  • Itveryhotinhere - Thursday, October 5, 2017 - link

    Not yet have power consumption graph ?
  • Ryan Smith - Thursday, October 5, 2017 - link

    It's there: https://www.anandtech.com/show/11859/the-anandtech...
  • Itveryhotinhere - Thursday, October 5, 2017 - link

    Thanks
  • Itveryhotinhere - Thursday, October 5, 2017 - link

    That power consumption at full load already use boost or only at base clock ?
  • Ian Cutress - Thursday, October 5, 2017 - link

    All-core turbo, as always.
  • SunnyNW - Thursday, October 5, 2017 - link

    Can you please tell me how you got to the +20% frequency for CPU B in the twitter poll?
  • mkaibear - Friday, October 6, 2017 - link

    Yeah that doesn't make a lot of sense to me either.

    CPU A is the 8600K. Runs at a base of 3.6 and an all-core turbo of 4.1.
    CPU B is the 8700. Runs at a base of 3.2 and an all-core turbo of 4.3.

    That's either 11% slower (base) or about 5% faster (all-core turbo). Neither is 20%!

    If you compare the base speed of the 8600K and the all-core turbo speed of the 8700 then you get about 19.4% which is close enough to 20% I suppose but that's not really a fair comparison?
  • sonny73n - Friday, October 6, 2017 - link

    Nice pointing that out. But there still were about 1,800 blind votes ;)

Log in

Don't have an account? Sign up now