This year has been enjoyably eventful for processor releases. Intel launched their 7th Generation processors, Kaby Lake, in January. Then we had AMD release their new high-performance microarchitecture in Ryzen, EPYC and Threadripper. Intel then launched their Skylake-SP Xeon Scalable Platform, based on an upgraded 6th Generation core design, and we’re expecting new AMD APUs for mobile later this year.

And adding to that list this morning is once again is Intel. Today the company is launching its new 8th Generation family of processors, starting with four CPUs for the 15W mobile family. The launch of these processors was perhaps spoiled by Intel jumping the gun a few days ago and listing the processors on its own public price list, but also we have started to see laptop and mobile designs being listed at various retailers before the official announcement.

There are two elements that make the launch of these 8th Gen processors different. First is that the 8th Gen is at a high enough level, running basically the same microarchitecture as the 7th Gen – more on this below. But the key element is that, at the same price and power where a user would get a dual core i5-U or i7-U in their laptop, Intel will now be bumping those product lines up to quad-cores with hyperthreading. This gives a 100% gain in cores and 100% gain in threads.

Obviously nothing is for free, so despite Intel stating that they’ve made minor tweaks to the microarchitecture and manufacturing to get better performing silicon, the base frequencies are down slightly. Turbo modes are still high, ensuring a similar user experience in most computing tasks. Memory support is similar – DDR4 and LPDDR3 are supported, but not LPDDR4 – although DDR4 moves up to DDR4-2400 from DDR4-2133.

Specifications of Intel Core i5/i7 U-series CPUs
7th Generation 8th Generation
  Cores Freq +
Turbo
L3 Price   Cores Freq +
Turbo
L3 Price
i7-7660U 2/4 2.5/4.0 GHz 4 MB $415 i7-8650U 4/8 1.9/4.2 GHz 8 MB $409
i7-7560U 2.4/3.8 GHz $415 i7-8550U 1.8/4.0 GHz $409
i5-7360U 2/4 2.3/3.6 GHz 3 MB $304 i5-8350U 4/8 1.7/3.6 GHz 6 MB $297
i5-7260U 2.2/3.4 GHz $304 i5-8250U 1.6/3.4 GHz $297

Another change from 7th Gen to 8th Gen will be in the graphics. Intel is upgrading the nomenclature of the integrated graphics from HD 620 to UHD 620, indicating that the silicon is suited for 4K playback and processing. During our pre-briefing it was categorically stated several times that there was no change between the two, however we have since confirmed that the new chips will come with HDCP 2.2 support as standard for DP1.2a, removing the need for an external LSPCON for this feature. Other than this display controller change however, it appears that these new UHD iGPUs are architecturally the same as their HD predecessors.

Fundamentally these are what Intel calls a ‘4+2’ silicon design, featuring four cores and GT2 integrated graphics, whereas the last generation used 2+2 designs. The 4+2 design was also used in the mainstream desktop processors, suggesting that Intel is using those dies now for their 15W products rather than their 45W+ products. That being said, Intel is likely to have created new masks and revisions for this silicon to account for the lower power window as well as implementing HDCP 2.2 support and other minor fixes.

Now by having quad-core parts in the 15W form factor, performance on the new chips is expected to excel beyond what has been available from the previous generation of Core i5-U and Core i7-U processors. However Intel and its OEMs have a tight balancing act to walk here, as 15W is not a lot of thermal headroom for a two core CPU, let alone a four core one. At the same time we have started to see the 15W U-series parts find their way into smaller and even fanless notebook designs, which are more prone to throttling under sustained workloads, and quad core CPUs in this segment could exacerbate the issue. However, for the larger 13-15-inch designs with active cooling, moving down from a 35W-45W quad core processor down to 15W will likely offer substantially better battery life during intense loading, should OEMs swap out H-series chips for the new U-series chips in their designs.

Intel’s big aim with the new processors is, as always, to tackle the growing market of 3-5+ year old devices still being used today, quoting better performance, a better user experience, longer battery life, and fundamentally new experiences when using newer hardware. Two years ago Intel quoted 300 million units fit into this 3-5+ year window; now that number is 450 million.

Intel provided this shot of a wafer containing these new refresh dies, which by my math gives 22 x 32.7 dies per wafer. Giving some margin for die spacing, this correlates to a 13.6 x 9.1 mm die, at 124 mm2 and 478 full dies per wafer. At a tray cost of $409 per Core i7, and running at ~124mm2 per die, that makes an interesting metric of $3.30 per square millimeter. Intel no longer officially provides die sizes or transistor counts, though a list of $/mm2 would be interesting to compile - for reference some of the high-end Xeons push north of $19/mm2.

Kaby Lake Refresh? 14+? Where’s my Coffee (Lake)?

So despite Intel launching its 7th Generation family in January, today Intel is formally launching the 8th Generation only eight months later. To explain why Intel is breaking the usual 12-18 month cadence for the generation product, it comes down to product positioning.

In the past we are used to a new numbered generation to come with a new core microarchitecture design. But this time Intel is improving a core design, calling it a refresh, and only releasing a few processors for the mobile family. We expect that Intel’s 8th Generation will eventually contain three core designs of product on three different process design nodes: the launch today is Kaby Lake Refresh on 14+, and in the future we will see Coffee Lake on 14++ become part of the 8th Gen, as well as Cannon Lake on 10nm.

Intel's Core Architecture Cadence (8/20)
Core Generation Microarchitecture Process Node Release Year
2nd Sandy Bridge 32nm 2011
3rd Ivy Bridge 22nm 2012
4th Haswell 22nm 2013
5th Broadwell 14nm 2014
6th Skylake 14nm 2015
7th Kaby Lake 14nm+ 2016
8th Kaby Lake Refresh
Coffee Lake
Cannon Lake
14nm+
14nm++
10nm
2017
2017?
2018?
9th Ice Lake?
...
10nm+ 2018?
Unknown Cascade Lake (Server) ? ?

Now the Generation name is no longer in direct correlation with underlying core microarchitecture or lithography process. This is going to confuse some users and anger others, although Intel’s official line is along the lines of the fact that lithography process nodes are harder to optimize, smaller nodes benefit in yield from smaller cores and as such their product portfolio has to expand beyond traditional naming in order to provide the appropriate product and the appropriate price point.

In our pre-briefings, Intel only mentioned Coffee Lake in the context of the fact that today’s launch is not Coffee Lake. Because media were expecting this to be Coffee Lake (and expecting it to be a desktop processor launch), the question ‘is this Coffee Lake’ was actually asked several times, and the answer had to be repeated. These four new CPUs are still Kaby Lake CPUs built on the same 14+ technology, with minor updates, and bringing quad cores to 15W.

So when is Coffee Lake on 14++ (or Cannon Lake) coming? Intel only stated that other members of the 8th Generation family (which contains Kaby Lake Refresh, Coffee Lake and Cannon Lake) are coming later this year. Desktop will come in the autumn, and additional products for enterprise, workstation and enthusiast notebooks will also happen. As for today's 8th Generation U-series announcement, Intel tells us that we should start seeing laptops using the new CPUs hit the market in September.

Update: Along with the product specs for the new mobile SKUs, Intel has also uploaded the new box art for the desktop 8th Gen Core parts to their website. The boxes confirm, among other things, that once these desktop parts will launch they'll have 6 cores (with HT for the i7) and require 300 series motherboards.

Related Reading

POST A COMMENT

145 Comments

View All Comments

  • damianrobertjones - Monday, August 21, 2017 - link

    Or Surface Pro with fan. Reply
  • North01 - Monday, August 21, 2017 - link

    I think it would be a bit out of place in a Surface Pro. The i7 Surface Pro, with fan, uses GT3e. These new chips only use GT2. Then there's also the throttling to consider.

    Currently, the Surface Book uses GT2 for both the i5 and i7 versions, which makes sense, as there's the additional dGPU in the keyboard.
    Reply
  • Manch - Monday, August 21, 2017 - link

    Maybe not these cpu's in a Pro, but a quadcore w/Gt3e or newer should flow down the pipe soon. Maybe in time for a spring refresh of the surface. Curious as to what AMD will offer as far as APU goes. If it's performant, then I wouldn't mind seeing it in a Surface Book. Reply
  • melgross - Monday, August 21, 2017 - link

    The way sales are going, there may not be a new Surface anything. Reply
  • North01 - Monday, August 21, 2017 - link

    Enlighten us melgross, on the way sales are going. Do you have some insider information? We have little to no information on Surface Pro or Surface Laptop sales given they started selling in limited quantities a little over a week before the end of Microsoft's last quarter. So please, let us know as to why Microsoft will stop making Surface devices and why we won't see this in a Surface Book. Reply
  • Crazy1 - Wednesday, August 23, 2017 - link

    I can't speak for sales, but Consumer Reports just removed its recommendation for all Surface devices due to significant user reports of defects and returns. CR said 25% of 90,000 Surface device owners surveyed stated their device broke in under 2 years, which they also stated was significantly higher than most other brands. MS responded to the CR results, stating that their own breakage measurements were significantly different, but they failed to say whether or not CR's numbers were higher or lower than their own defect numbers. It's like Microsoft wanted to appear defensive without being capable of defending themselves. It's not a good look, but it's probably not damaging enough to deter MS from the hardware game. Reply
  • serendip - Monday, August 21, 2017 - link

    What a naming nightmare. A 8xxx chip can have different architectures than its siblings but the only way to tell is to look it up on Intel's labyrinthine product site. Reply
  • Lord-Bryan - Monday, August 21, 2017 - link

    Yeah, this is more confusing than last year's m7/i7 naming fiasco Reply
  • MrSpadge - Monday, August 21, 2017 - link

    Would have been nice and constitent for them to simply put these into the mobile core i9 7000 class. But we know for mobile it's apparently still very important to show the biggest numbers, irregardless of actual hardware. Reply
  • nevcairiel - Monday, August 21, 2017 - link

    Well as long as it keeps split between mobile and desktop its not that big of a deal. If they start mixing things more directly in the same segment, it might get more annoying. Reply

Log in

Don't have an account? Sign up now