2017 CPU Benchmarking

For our review, we are implementing our fresh CPU testing benchmark suite, using new scripts developed specifically for this testing. This means that with a fresh OS install, we can configure the OS to be more consistent, install the new benchmarks, maintain version consistency without random updates and start running the tests in under 5 minutes. After that it's a one button press to start an 8-10hr test (with a high-performance core) with nearly 100 relevant data points in the benchmarks given below. The tests cover a wide range of segments, some of which will be familiar but some of the tests are new to benchmarking in general, but still highly relevant for the markets they come from.

Our new CPU tests go through six main areas. We cover the Web (we've got an un-updateable version of Chrome 56), general system tests (opening tricky PDFs, emulation, brain simulation, AI, 2D image to 3D model conversion), rendering (ray tracing, modeling), encoding (compression, AES, h264 and HEVC), office based tests (PCMark and others), and our legacy tests, throwbacks from another generation of bad code but interesting to compare.

Our graphs typically list CPUs with microarchitecture, SKU name, cost and power. The cost will be one of two numbers, either the 1k unit price 'tray price' for when a business customer purchases 1000 CPUs, or the MSRP likely to be found at retail. The problem here is that neither Intel nor AMD are consistent: Intel has a tray price for every CPU, but an MSRP only for parts sold at retail. AMD typically quotes MSRP for CPUs at retail, tray prices for enterprise CPUs, and doesn't say much about OEM only parts. We try to find a balance here, so prices may be $10-$20 from what you might expect.

A side note on OS preparation. As we're using Windows 10, there's a large opportunity for something to come in and disrupt our testing. So our default strategy is multiple: disable the ability to update as much as possible, disable Windows Defender, uninstall OneDrive, disable Cortana as much as possible, implement the high performance mode in the power options, and disable the internal platform clock which can drift away from being accurate if the base frequency drifts (and thus the timing ends up inaccurate).

Additional Note for 7/28: As this review is being written, due to limited time, testing on the CPUs is still ongoing and some benchmark graphs will be added in time when the results come in and can be verified.

Web Tests on Chrome 56

Sunspider 1.0.2
Mozilla Kraken 1.1
Google Octane 2.0
WebXPRT15

System Tests

PDF Opening
FCAT
3DPM v2.1
Dolphin v5.0
DigiCortex v1.20
Agisoft PhotoScan v1.0

Rendering Tests

Corona 1.3
Blender 2.78
LuxMark CPU C++
LuxMark CPU OpenCL
POV-Ray 3.7.1b4
Cinebench R15 ST
Cinebench R15 MT

Encoding Tests

7-Zip 9.2
WinRAR 5.40
AES Encoding (TrueCrypt 7.2)
HandBrake v1.0.2 x264 LQ
HandBrake v1.0.2 x264-HQ
HandBrake v1.0.2 HEVC-4K

Office / Professional

PCMark8
Chromium Compile (v56)
SYSmark 2014 SE

Legacy Tests

3DPM v1 ST / MT
x264 HD 3 Pass 1, Pass 2
Cinebench R11.5 ST / MT
Cinebench R10 ST / MT

A side note - a couple of benchmarks (LuxMark) weren't fully 100% giving good data during testing. Need to go back and re-work this part of our testing.

2017 CPU Gaming Tests

For our new set of GPU tests, we wanted to think big. There are a lot of users in the ecosystem that prioritize gaming above all else, especially when it comes to choosing the correct CPU. If there's a chance to save $50 and get a better graphics card for no loss in performance, then this is the route that gamers would prefer to tread. The angle here though is tough - lots of games have different requirements and cause different stresses on a system, with various graphics cards having different reactions to the code flow of a game. Then users also have different resolutions and different perceptions of what feels 'normal'. This all amounts to more degrees of freedom than we could hope to test in a lifetime, only for the data to become irrelevant in a few months when a new game or new GPU comes into the mix. Just for good measure, let us add in DirectX 12 titles that make it easier to use more CPU cores in a game to enhance fidelity.

Our original list of nine games planned in February quickly became six, due to the lack of professional-grade controls on Ubisoft titles. If you want to see For Honor, Steep or Ghost Recon: Wildlands benchmarked on AnandTech, point Ubisoft Annecy or Ubisoft Montreal in my direction. While these games have in-game benchmarks worth using, unfortunately they do not provide enough frame-by-frame detail to the end user, despite using it internally to produce the data the user eventually sees (and it typically ends up obfuscated by another layer as well). I would instead perhaps choose to automate these benchmarks via inputs, however the extremely variable loading time is a strong barrier to this.

So we have the following benchmarks as part of our 4/2 script, automated to the point of a one-button run and out pops the results four hours later, per GPU. Also listed are the resolutions and settings used.

  • Civilization 6 (1080p Ultra, 4K Ultra)
  • Ashes of the Singularity: Escalation* (1080p Extreme, 4K Extreme)
  • Shadow of Mordor (1080p Ultra, 4K Ultra)
  • Rise of the Tomb Raider #1 - GeoValley (1080p High, 4K Medium)
  • Rise of the Tomb Raider #2 - Prophets (1080p High, 4K Medium)
  • Rise of the Tomb Raider #3 - Mountain (1080p High, 4K Medium)
  • Rocket League (1080p Ultra, 4K Ultra)
  • Grand Theft Auto V (1080p Very High, 4K High)

For each of the GPUs in our testing, these games (at each resolution/setting combination) are run four times each, with outliers discarded. Average frame rates, 99th percentiles and 'Time Under x FPS' data is sorted, and the raw data is archived.

The four GPUs we've managed to obtain for these tests are:

  • MSI GTX 1080 Gaming X 8G
  • ASUS GTX 1060 Strix 6G
  • Sapphire Nitro R9 Fury 4GB
  • Sapphire Nitro RX 480 8GB

In our testing script, we save a couple of special things for the GTX 1080 here. The following tests are also added:

  • Civilization 6 (8K Ultra, 16K Lowest)

This benchmark, with a little coercion, are able to be run beyond the specifications of the monitor being used, allowing for 'future' testing of GPUs at 8K and 16K with some amusing results. We are only running these tests on the GTX 1080, because there's no point watching a slideshow more than once.

Test Bed and Setup Benchmarking Performance: CPU System Tests
Comments Locked

140 Comments

View All Comments

  • Oxford Guy - Thursday, July 27, 2017 - link

    "The Ryzen 3 1200 brings up the rear of the stack, being the lowest CPU in the stack, having the lowest frequency at 3.1G base, 3.4G turbo, 3.1G all-core turbo, no hyperthreading and the lowest amount of L3 cache."

    That bit about the L3 is incorrect unless the chart on page 1 is incorrect. It shows the same L3 size for 1400, 1300X, and 1200.
  • Oxford Guy - Thursday, July 27, 2017 - link

    And this:

    "Number 3 leads to a lop-sided silicon die, and obviously wasn’t chosen."

    Obviously?
  • Oxford Guy - Thursday, July 27, 2017 - link

    "DDR4-2400 C15"

    2400, really — even though it is, obviously, known that Zen needs faster RAM to perform efficiently?

    Joel Hruska managed to test Ryzen with 3200 speed RAM on his day 1 review. I bought 16 GB of 3200 RAM from Microcenter last Christmastime for $80. Just because RAM prices are nuts right now doesn't mean we should gut Ryzen's performance by sticking it with low-speed RAM.
  • Oxford Guy - Thursday, July 27, 2017 - link

    "This is also typically run at JEDEC subtimings where possible. It is noted that some users are not keen on this policy"

    Maybe you guys should rethink your logic.

    1) You have claimed, when overclocking, that it's not necessary to do full stability testing, like with Prime. Just passing some lower-grade stress testing is enough to make an overclock "stable enough".

    2) Your overclocking reviews have pushed unwise levels of voltage into CPUs to go along with this "stable enough" overclock.

    So... you argue against proof of true stability, both in the final overclock settings being satisfactorily tested and in safe voltages being decided upon.

    And — simultaneously — kneecap Zen processors by using silly JEDEC standards, trying to look conservative?

    Please.

    Everyone knows the JEDEC standard applies to enterprise. Patriot is just one manufacturer of RAM that tested and certified far better RAM performance on B350 and A320 Zen boards. You had that very article on your site just a short time ago.

    Your logic doesn't add up. It is not a significant enough cost savings for system builders to go with slow RAM for Zen. The only argument you can use, at all, is that OEMs are likely to kneecap Zen with slow RAM. That is not a given, though. OEMs can use faster RAM, like, at least, 2666, if they choose to. If they're marketing toward gamers they likely will.
  • Oxford Guy - Thursday, July 27, 2017 - link

    "Truth be told I never actually played the first version, but every edition from the second to the sixth, including the fifth as voiced by the late Leonard Nimoy"

    You mean Civ IV.
  • Oxford Guy - Thursday, July 27, 2017 - link

    And, yeah, we can afford to test with an Nvidia 1080 but we can't afford to use decent speed RAM.

    Yeah... makes sense.
  • Hixbot - Thursday, July 27, 2017 - link

    Are you having a conversation with yourself? Try to condense your points into a single post.
  • Oxford Guy - Friday, July 28, 2017 - link

    I don't live in a static universe where all of the things I'm capable of thinking of are immediately apparent, but thanks for the whine.
  • Manch - Friday, July 28, 2017 - link

    Really snowflake? You're saying he is whining? How many rants have you posted? LOL The difference between 2400 and 3200 shows up more on the higher end processors bc bigger L3 & HT err SMT. The diff in CPU bound gaming is 5-10% at most with the Ryzen 7's. Smaller with the 5's. Even more so with the 3's. Small enough to the point that it would not change the outlook on the CPU's. Also consider that if Ian change the parameters of his test constantly it would also skew numbers more so and render bench unreliable. Test the Ryzen 7's with 2133 then the 5's with 2400 then the 3's with 3200? Obviously anandtechs test are not the definitive performance bench mark for the world. What it is, is a reliably consistent benchmark allowing you to compare diff cpus with as little changed as possible as too not skew performance. Think EPA gas mileage stickers on cars. Will you get that rating? maybe. What it does is it gives you comparative results. From there its fairly easy to extrapolate the difference. Now I'm sure they will as they have in the past update there baseline specs for testing. You're running off the rails about how much the memory effects are. Look at all the youtube vids and other reviews out there. Difference yes. A lot? meh I also believe anandtech has mentioned doing a write up on the latest agesa update since its had a significant impact(including memory) on the series.
  • Oxford Guy - Friday, July 28, 2017 - link

    "You're saying he is whining? How many rants have you posted?"

    Pot kettle fallacy.

Log in

Don't have an account? Sign up now