Benchmarking Performance: CPU Web Tests

One of the issues when running web-based tests is the nature of modern browsers to automatically install updates. This means any sustained period of benchmarking will invariably fall foul of the 'it's updated beyond the state of comparison' rule, especially when browsers will update if you give them half a second to think about it. Despite this, we were able to find a series of commands to create an un-updatable version of Chrome 56 for our 2017 test suite. While this means we might not be on the bleeding edge of the latest browser, it makes the scores between CPUs comparable.

All of our benchmark results can also be found in our benchmark engine, Bench.

SunSpider 1.0.2: link

The oldest web-based benchmark in this portion of our test is SunSpider. This is a very basic javascript algorithm tool, and ends up being more a measure of IPC and latency than anything else, with most high-performance CPUs scoring around about the same. The basic test is looped 10 times and the average taken. We run the basic test 4 times.

Web: SunSpider on Chrome 56

Mozilla Kraken 1.1: link

Kraken is another Javascript based benchmark, using the same test harness as SunSpider, but focusing on more stringent real-world use cases and libraries, such as audio processing and image filters. Again, the basic test is looped ten times, and we run the basic test four times.

Web: Mozilla Kraken 1.1 on Chrome 56

Google Octane 2.0: link

Along with Mozilla, as Google is a major browser developer, having peak JS performance is typically a critical asset when comparing against the other OS developers. In the same way that SunSpider is a very early JS benchmark, and Kraken is a bit newer, Octane aims to be more relevant to real workloads, especially in power constrained devices such as smartphones and tablets.

Web: Google Octane 2.0 on Chrome 56

WebXPRT 2015: link

While the previous three benchmarks do calculations in the background and represent a score, WebXPRT is designed to be a better interpretation of visual workloads that a professional user might have, such as browser based applications, graphing, image editing, sort/analysis, scientific analysis and financial tools.

Web: WebXPRT 15 on Chrome 56

Benchmarking Performance: CPU Rendering Tests Benchmarking Performance: CPU Encoding Tests
Comments Locked

140 Comments

View All Comments

  • ampmam - Thursday, July 27, 2017 - link

    Great review but biased conclusion.
  • tvdang7 - Thursday, July 27, 2017 - link

    No overclock?
  • Oxford Guy - Thursday, July 27, 2017 - link

    No, just a RAM underclock.
  • zodiacfml - Thursday, July 27, 2017 - link

    overclocking tests on the ryzen 3 1200 please. the only weakness of the chip is for non-gaming or htpc usage as it will require purchasing a discrete graphics card. otherwise, it presents good value for most things like gaming and multi-threaded applications, add overclocking, and it gets even better.
  • kaesden - Thursday, July 27, 2017 - link

    one thing to not overlook with the ryzen 1300x is the platform. Its competitive with budget intel offerings and can take a drop in 8 core 16 thread upgrade with no other changes except maybe a better cooling solution, Something intel can't match. Intel has the same "strategy" at their high end with the new X299 platform, but they seem to have lost focus of the big picture. The HEDT platform is too expensive to fit this type of scenario. Anyone who's shelling out the cash for a HEDT system isn't the type of budget user who is going to go for the 7740x. they're just going to get a higher end cpu from the start if they can afford it at all, not to mention the confusion about what features work with what cpu's and what doesn't, etc...

    TLDR; AMD has a winner of a platform here that will only get better as time goes on.
  • peevee - Thursday, July 27, 2017 - link

    From the tests, looks like Razen 3 does not make much sense. Zen arch provides quite a boost from SMT in practically all applications where performance actually matters (which are all multithreaded for years now), and AMD artificially disabled this feature for that stupid Intel-like market segmentation.

    Also I am sure there are not that many CPUs where exactly 2 out of 4 cores on each CCX is broken. So in effect, in cases like one CCX has 4 good cores and another has only 2 they kill 2 good cores, kill half of L3, kill hyperthreading...

    It would be better to create a separate 1-CCX chip for the line, which would have much higher (more that twice per wafer) yield being half the size, and release 2, 3 and 4 core CPUs as Ryzen 2, 3 and 4 accordingly. With hyperthreading and everything. I am sure it does not cost "tens of millions of dollars" to create a new mask as even completely custom chips cost less, let alone that simple derivative.
  • Oxford Guy - Thursday, July 27, 2017 - link

    "It would be better to create a separate 1-CCX chip for the line"

    Or, it could be explained by this article why AMD can't release a Zen chip with 1 CCX enabled and one disabled. Instead, we just get "obviously".
  • silverblue - Friday, July 28, 2017 - link

    He did explain it. Page 1.
  • Oxford Guy - Saturday, July 29, 2017 - link

    Where?

    All I see is this: "Number 3 leads to a lop-sided silicon die, and obviously wasn’t chosen."

    That is not an explanation.
  • peevee - Tuesday, August 1, 2017 - link

    That is still be half the yield per wafer compared to a dedicated 1-CCX line. Twice the cost. Cost matters.
    And the 3rd chip must be 1CCX+1GPU. SMT must be on everywhere though, it is too good to artificially lower value of your product by disabling it by segmentation.

Log in

Don't have an account? Sign up now