Single Threaded Integer Performance: SPEC CPU2006

Even in the server market where high core count CPUs are ruling the roost, high single threaded performance is still very desirable. It makes sure that a certain level of performance is guaranteed in every situation, not just in "throughput situations" of "embarrassingly parallel" software. 

SPEC CPU2017 has finally launched, but it did so while our testing was already under way. So SPEC CPU2006 was still our best option to evaluate single threaded performance. Even though SPEC CPU2006 is more HPC and workstation oriented, it contains a good variety of integer workloads.

It is our conviction that we should try to mimic how performance critical software is compiled instead of trying to achieve the highest scores. To that end, we:

  • use 64 bit gcc : by far the most used compiler on linux for integer workloads, good all round compiler that does not try to "break" benchmarks (libquantum...) or favor a certain architecture
  • use gcc version 5.4: standard compiler with Ubuntu 16.04 LTS. (Note that this is upgraded from 4.8.4 used in earlier articles)
  • use -Ofast -fno-strict-aliasing optimization: a good balance between performance and keeping things simple
  • added "-std=gnu89" to the portability settings to resolve the issue that some tests will not compile with gcc 5.x
  • run one copy of the test

The ultimate objective is to measure performance in non-"aggressively optimized" applications where for some reason – as is frequently the case – a "multi-thread unfriendly" task keeps us waiting. 

First the single threaded results. It is important to note that thanks to modern turbo technology, all CPUs will run at higher clock speeds than their base clock speed. 

  • The Xeon E5-2690 ("Sandy Bridge") is capable of boosting up to 3.8 GHz
  • The Xeon E5-2690 v3 ("Haswell") is capable of boosting up to 3.5GHz
  • The Xeon E5-2699 v4  ("Broadwell") is capable of boosting up to 3.6 GHz
  • The Xeon 8176 ("Skylake-SP") is capable of boosting up to 3.8 GHz
  • The EPYC 7601 ("Naples") is capable of boosting up to 3.2 GHz

First we look at the absolute numbers. 

Subtest Application type Xeon E5-2690
@ 3.8
Xeon E5-2690 v3
@ 3.5
Xeon E5-2699 v4
@ 3.6
EPYC 7601
@3.2
Xeon 8176
@3.8
400.perlbench Spam filter 35 41.6 43.4 31.1 50.1
401.bzip2 Compression 24.5 24.0 23.9 24.0 27.1
403.gcc Compiling 33.8 35.5 23.7 35.1 24.5
429.mcf Vehicle scheduling 43.5 42.1 44.6 40.1 43.3
445.gobmk Game AI 27.9 27.8 28.7 24.3 31.0
456.hmmer Protein seq. analyses 26.5 28.0 32.3 27.9 35.4
458.sjeng Chess 28.9 31.0 33.0 23.8 33.6
462.libquantum Quantum sim 55.5 65.0 97.3 69.2 102
464.h264ref Video encoding 50.7 53.7 58.0 50.3 67.0
471.omnetpp Network sim 23.3 31.3 44.5 23.0 40.8
473.astar Pathfinding 25.3 25.1 26.1 19.5 27.4
483.xalancbmk XML processing 41.8 46.1 64.9 35.4 67.3

As raw SPEC scores can be a bit much to deal with in a dense table, we've also broken out our scores on a percentage basis. Sandy Bridge EP (Xeon E5 v1) is about 5 years old, the servers based upon this CPU are going to get replaced by newer ones. So we've made "Single threaded Sandy Bridge-EP performance" our reference (100%) , and compare the single threaded performance of all other architectures accordingly.

Subtest Application type Xeon E5-2690
@ 3.8
Xeon E5-2690 v3
@ 3.5
Xeon E5-2699 v4 @ 3.6 EPYC 7601 @3.2 Xeon 8176 @ 3.8
400.perlbench Spam filter 100% 119% 124% 89% 143%
401.bzip2 Compression 100% 98% 98% 98% 111%
403.gcc Compiling 100% 105% 70% 104% 72%
429.mcf Vehicle scheduling 100% 97% 103% 92% 100%
445.gobmk Game AI 100% 100% 103% 87% 111%
456.hmmer Protein seq. analyses 100% 106% 122% 105% 134%
458.sjeng Chess 100% 107% 114% 82% 116%
462.libquantum Quantum sim 100% 117% 175% 125% 184%
464.h264ref Video encoding 100% 106% 114% 99% 132%
471.omnetpp Network sim 100% 134% 191% 99% 175%
473.astar Pathfinding 100% 99% 103% 77% 108%
483.xalancbmk XML processing 100% 110% 155% 85% 161%

SPEC CPU2006 analysis is complicated, and with only a few days spend on the EPYC server, we must admit that what follows is mostly educated guessing. 

First off, let's gauge the IPC efficiency of the different architectures. Considering that the EPYC core runs at 12-16% lower clockspeeds (3.2 vs 3.6/3.8 GHz), getting 90+% of the performance of the Intel architectures can be considered a "strong" (IPC) showing for the AMD "Zen" architecture. 

As for Intel's latest CPU, pay attention to the effect of the much larger L2-cache of the Skylake-SP core (Xeon 8176) compared to the previous generation "Broadwell". Especially perlbench, gobmk, hmmer and h264ref (the instruction part) benefit. 

Meanwhile with the new GCC 5.4 compiler, Intel's performance on the "403.gcc benchmark" seems to have regressed their newer rchitectures. While we previously saw the Xeon E5-2699v4 perform at 83-95% of the "Sandy Bridge" Xeon E5-2690, this has further regressed to 70%. The AMD Zen core, on the other hand, does exceptionally well when running GCC. The mix of a high percentage of (easy to predict) branches in the instruction mix, a relatively small footprint, and a heavy reliance on low latency (mostly L1/L2/8 MB L3) seems to work well. The workloads where the impact of branch prediction is higher (somewhat higher percentage of branch misses) - gobmk, sjeng, hmmer - perform quite well on "Zen" too, which has a much lower branch misprediction penalty than AMD's previous generation architecture thanks to the µop cache. 

Otherwise the pointer chasing benchmarks – XML procesing and Path finding – which need a large L3-cache, are the worst performing on EPYC. 

Also notice the fact that the low IPC omnetpp ("network sim") runs slower on Skylake-SP than on Broadwell, but still much faster than AMD's EPYC. Omnetpp is an application that benefited from the massive 55 MB L3-cache of Broadwell, and that is why performance has declined on Skylake. Of course, this also means that the fractured 8x8 MB L3 of AMD's EPYC processor causes it to perform much slower than the latest Intel server CPUs. In the video encoding benchmark "h264ref" this plays a role too, but that benchmark relies much more on DRAM bandwidth. The fact that the EPYC core has higher DRAM bandwidth available makes sure that the AMD chip does not fall too far behind the latest Intel cores. 

All in all, we think we can conclude that the single threaded performance of the "Zen architecture" is excellent, but it somewhat let down by the lower turbo clock and the "smaller" 8x8 MB L3-cache. 

Memory Subsystem: Latency SMT Integer Performance With SPEC CPU2006
Comments Locked

219 Comments

View All Comments

  • deltaFx2 - Thursday, July 13, 2017 - link

    "Can you mention one innovation from AMD that changed the world?" : None. But the same applies to Intel too, save, I suppose, the founders (Moore and Noyce) contributions to IC design back when they were at Fairchild/Shockley. That's not Intel's contribution. Computer Architecture/HPC? That's IBM. They invented the field along with others like CDC. Intel is an innovator in process technology, specifically manufacturing. Or used to be... others are catching up. That 3-yr lead that INtel loves to talk about is all but gone. So with that out of the way...

    AMD's contributions to x86 technology: x86-64, hypertransport, integrated memory controller, multicore, just to name a few. Intel copied all of them after being absolutely hammered by Opteron. Nehalem system architecture was a copy-paste of Opteron. It is to AMD's discredit that they ceded so much ground on the CPU microarchitecture since then with badly executed Bulldozer, but it was AMD that brought high-performance features to x86 server. Intel would've just loved to keep x86 on client and Itanium on server (remember that innovative atrocity?). Then there's a bunch on the GPU side (which INtel can't get right for love or money), but that came from an acquisition, so I won't count those.

    "AMD exists because they are always inferior". Remember K8? It absolutely hammered intel until 2007. Remember Intel's shenanigans bribing the likes of Dell to not carry K8? Getting fined in the EU for antitrust behaviors and settling with AMD in 2010? Not much of a memory card on you, is there?

    AMD gaining even 5-10% means two things for intel: Lower margins on all but the top end (Platinum) and a loss in market share. That's plain bad for the stock.

    "Intel is a data center giant have head start have the resources...". Yes, they are giants in datacenter compute. 99% market share. Only way to go from there is down. Also, those acquisitions you're talking about? Only altera applies to the datacenter. Also, remember McAfee for an eye-watering $7.8 bn? How's that working out for them?
  • Shankar1962 - Wednesday, July 12, 2017 - link

    Nvidia who have been ahead than Intel in AI should be the more competent threat
    How much market share Intel loses depends on how they compete against Nvidia
    Amd will probably gain 5% by selling products for cheap prices
    Intel controls 98/99% share so it's inevitable to lose a few % as more players see the money potential but unless Intel loses to Nvidia there is annuphill battle for Qualcomm ARM.
  • HanSolo71 - Wednesday, July 12, 2017 - link

    Could you guys create a Benchmark for Virtual Desktop Solutions? These AMD chips sound awesome for something like my Horizon View environment where I have hundreds of 2 core 4GB machines.
  • Threska - Saturday, July 22, 2017 - link

    For VDI wouldn't either an APU setup, or CPU+GPU be better?
  • msroadkill612 - Wednesday, July 12, 2017 - link

    Kudos to the authors. I imagine its gratifying to have stirred such healthy & voluminous debate :)
  • milkod2001 - Thursday, July 13, 2017 - link

    Are you guys still updating BENCH results? I cannot find there benchmark results for RYZEN CPUs when i want to compare them to others.
  • Ian Cutress - Friday, July 14, 2017 - link

    They've been there since the launch

    AMD (Zen) Ryzen 7 1800X:
    http://www.anandtech.com/bench/product/1853
  • KKolev - Thursday, July 13, 2017 - link

    I wonder if AMD'd EPYC CPU's can be overclocked. If so, the AMD EPYC 7351P would be very interesting indeed.
  • uklio - Thursday, July 13, 2017 - link

    How could you not do Cinebench results?! we need an answer!
  • JohanAnandtech - Thursday, July 13, 2017 - link

    I only do server benchmarks, Ian does workstation. Ian helped with the introduction, he will later conduct the workstation benchmarks.

Log in

Don't have an account? Sign up now