Introducing Skylake-SP: The Xeon Scalable Processor Family

The biggest news hitting the streets today comes from the Intel camp, where the company is launching their Skylake-SP based Xeon Scalable Processor family. As you have read in Ian's Skylake-X review, the new Skylake-SP core has been rather significantly altered and improved compared to it's little brother, the original Skylake-S. Three improvements are the most striking: Intel added 768 KB of per-core L2-cache, changed the way the L3-cache works while significantly shrinking its size, and added a second full-blown 512 bit AVX-512 unit. 

On the defensive and not afraid to speak their mind about the competition, Intel likes to emphasize that AMD's Zen core has only two 128-bit FMACs, while Intel's Skylake-SP has two 256-bit FMACs and one 512-bit FMAC. The latter is only useable with AVX-512. On paper at least, it would look like AMD is at a massive disadvantage, as each 256-bit AVX 2.0 instruction can process twice as much data compared to AMD's 128-bit units. Once you use AVX-512 bit, Intel can potentially offer 32 Double Precision floating operations, or 4 times AMD's peak.  

The reality, on the other hand, is that the complexity and novelty of the new AVX-512 ISA means that it will take a long time before most software will adopt it. The best results will be achieved on expensive HPC software. In that case, the vendor (like Ansys) will ask Intel engineers to do the heavy lifting: the software will get good AVX-512 support by the expensive process of manual optimization. Meanwhile, any software that heavily relies on Intel's well-optimized math kernel libraries should also see significant gains, as can be seen in the Linpack benchmark. 

In this case, Intel is reporting 60% better performance with AVX-512 versus 256-bit AVX2. 

For the rest of us mere mortals, it will take a while before compilers will be capable of producing AVX-512 code that is actually faster than the current AVX binaries. And when they do, the result will be probably be limited, as compilers still have trouble vectorizing code from scratch. Meanwhile it is important to note that even in the best-case scenario, some of the performance advantage will be negated by the significantly lower clock speeds (base and turbo) that Intel's AVX-512 units run at due to the sheer power demands of pushing so many FLOPS. 

For example, the Xeon 8176 in this test can boost to 2.8 GHz when all cores are active. With AVX 2.0 this is reduced to 2.4 GHz (-14%), with AVX-512, the clock tumbles down to 1.9 GHz (another 20% lower). Assuming you can fill the full width of the AVX unit, each step still sees a significant performance improvement, but AVX2 to AVX-512 won't offer a full 2x performance improvement even with ideal code.

Lastly, about half of the major floating point intensive applications can be accelerated by GPUs. And many FP applications are (somewhat) limited by memory bandwidth. While those will still benefit from better AVX code, they will show diminishing returns as you move from 256-bit AVX to 512-bit AVX. So most FP applications will not achieve the kinds of gains we saw in the well-optimized Linpack binaries. 

AMD’s EPYC 7000-Series Processors Intel's New On-Chip Topology: A Mesh
Comments Locked

219 Comments

View All Comments

  • Panxa - Sunday, July 16, 2017 - link

    "Competition has spoiled the naming convention Intels 14 === competetions 7 or 10"
    The node naming convention used to be the gate length, however that has become irrelevant. Intel 14 nm gate lenghth is about 1.5x and 10 nm about 1.8x. Companies and organizations have developed quite accurate models to asses process density with equations based on process poarameters like CPP and MPP to what they call a "standard node"

    "Intel used to maintain 2 year lead now grew that to 3-4year lead"
    Don't belive intel propaganda. Intel takes the lead in 2014 with their 14nm process with a standard node value of 12.1. Samsung and then TSMC take the lead in 2017 with their 10nm processes having standard node values of 11.2 and 10.3 respectively. Intel will retake the the lead back when they deliver their 10nm process with a standard node value of 8.3. However it will be a short lived lead, TSMC will retake the lead back with their 7nm with a standard node of 7.9 before GLOBALFOUNDRIES takes the lead in 2018 with their 7nm process with a standard node value of 7.8. The gap is gone !!!

    "yet their revenue profits grow year over year"
    Wrong. Intel revenue for the last years remained fairly constant
    2011 grow
    2012 decline
    2013 decline
    2014 grow
    2015 decline
    2016 grow
    All in all from 2011 to 2016 revenue went from 54 billion to 59 billion. If we take into account inflation $54 billion in the year 2011 is worth $58.70 billion today.

    Not to mention that Samsung has overtaken Intel to become the world No.1 semiconductor company, and that a "pure play" foundry like TSMC has surpassed intel in market CAP
  • johnp_ - Wednesday, July 12, 2017 - link

    The Xeon Bronze Table on Page 7 seems to have an error. It lists the 4112 as having 5.50MB L3, but ark says it has 8.25MB, just like the 3104, so it looks like it has an above-average L3/Core:

    https://ark.intel.com/products/123551
  • Ian Cutress - Friday, July 14, 2017 - link

    I've got Intel documents from our briefings that say it has the regular 1.375MB/core allocation, and others saying it has 8.25MB. I'm double checking.
  • johnp_ - Friday, July 21, 2017 - link

    All commercial listings and most reviews I've seen online show the processor with 8.25MB as well.
    Do you have any further information from Intel?
  • pepoluan - Wednesday, July 12, 2017 - link

    What I'm dying to know: Performance when running as virtualization host. Using Xen, VMware, and Hyper-V.
  • Threska - Saturday, July 22, 2017 - link

    Virtualization itself, and more importantly virtualization security.
  • Sparkyman215 - Wednesday, July 12, 2017 - link

    Typo here: Intel will seven different versions of the chipset, varying in 10G and QAT support, but also varying in TDP:
  • tmbm50 - Wednesday, July 12, 2017 - link

    One thing to consider when considering value is the Microsoft Server 2016 core tax.....assuming your mission critical apps are still tied to MS ;-)

    Server 2016 now chargers per core with an 8 core socket as the base. The Window license for a 32 core server is NUTS.

    I'm surprised AMD and Intel are not pushing Microsoft on this. For datacenters like ourselves its pushing us to 8 core sku's with more 2U nodes.
  • msroadkill612 - Wednesday, July 12, 2017 - link

    Aye, its a fuuny world lad.

    The way the automobile panned out differently in different countries, was laargely die to fuel tax regimes, rather than technology.

    i.e. what is the best way to cheat a bit on the incumbent tax rules of germany/france/uk vs a more laissez faire USA. In UK, u were taxed on horsepower, but u could cheat a bit w/ hi revs & more gears - that sort of thing.
  • rahvin - Wednesday, July 12, 2017 - link

    Who runs any Windows service on bare metal these days? If you haven't virtulalized your windows servers running on KVM you should.

Log in

Don't have an account? Sign up now