Pricing Comparison: AMD versus Intel

We are all hoping that the renewed competition between Intel and AMD results in more bang for the buck. Intel just launched about 50 SKUs, so we made a list of those that will go head-to-head with AMD's already announced EPYC SKUs. On average, the Intel SKUs will priced slightly higher, reflecting the fact that Intel believes buyers are willing to pay a bit more for the vendor with the better track record. 

AMD EPYC Processors (2P) Intel Xeon Processoors (2-8P)
AMD EPYC
SKU
Cores
 
Freq
(GHz)
Base-Max
Price  Intel Xeon
SKU
Cores Freq 
(GHz)
Base-Max
Price
        Xeon 8180 (205W) 28 2.5-3.8 $10009
        Xeon 8176M (165W) 28 2.1-3.8 $11722
        Xeon 8176 (165W) 28 2.1-3.8 $8719
EPYC 7601
(180W)
32  2.2 -3.2 $4200 Xeon 8160 (150W) 24 2.1-3.7 $4702
EPYC 7551
(180W)
32 2.0-3.0 >$3400 Xeon 6152 (140W) 22 2.1-3.7 $3655
EPYC 7501 (155/170W) 32 2.0-3.0 $3400 Xeon 6150 (165W) 18 2.7-3.4 $3358
EPYC 7451
(180W)
24 2.3-3.2 >$2400 Xeon 6140 (165W) 18 2.3-3.7 $2445
EPYC 7401 (155/170W) 24 2.0-3.0 $1850 Xeon 6130 (125W) 16 2.1-3.7 $1894
        Xeon 5120 (105W) 14 2.2-3.2 $1555
EPYC 7351 (155/170W) 16 2.4-2.9 >$1100 Xeon 5118 (105W) 12 2.3-3.2 $1221
EPYC 7301 (155/170W) 16 2.2-2.7 >$800 Xeon 4116
(85W)
12 2.1-3.0 $1002
EPYC 7281 (155/170W) 16 2.1-2.7 $650 Xeon 4114
(85W)
10 2.2-3.0 $694
EPYC 7251
(120W)
2.1-2.9 $475 Xeon 4110
(85W)
8 2.1-3.0 $501

Several trends pop up as we look at the table above. 

First of foremost, those 24-28 core CPUs are a wonder of modern multicore CPU architecture, but you sure have to pay a lot of money for them. This is especially the case for the SKUs that can support 1.5 TB per socket. Of course if you can afford SAP Hana, you can afford $10k CPUs (or so the theory goes).

Still, if we compare the new high-end Skylake-EP SKUs with the previous 22-core Xeon E5-2699 v4 ($4199), paying twice as much for a 28-core chip just because it can be used in 8 socket configuration is bad news for those of us who need a very fast 2 socket system. In fact, it is almost as Intel has no competition: we only get a little more performance for the same price. For example you can get a Xeon 6148 (20 cores at 2.4 GHz, 150W TDP) for $3072, while you had to pay $3228 last generation for a Xeon E5-2698 v4 (20 cores at 2.2 GHz, 135W). The latter had smaller L2-caches but a much larger L3-cache (45 MB vs 27.5 MB). We're still not getting big steps forward on a performance-per-dollar basis, a similar problem we had with the launch of the Xeon E5 v4 last year. 

Hopefully, AMD's EPYC can put some pressure on Intel, if not exceed the 800lb gorilla entirely. AMD typically offers many more cores for the same price. At the high end, AMD offers up to 10 more cores than the similar Xeon: compare the EPYC 7551 with the Intel Xeon 6152.

On the other hand, Intel offers lower TDPs and higher turbo clocks. The 16-core EPYC CPUs in particular seem to have remarkably high TDPs compared to similar Intel SKUs. Those 16-cores look even worse as, despite the lower core count and high TDP, the turbo clock is lower than 3 GHz. 

In a nutshell: looking at the current lineups we want lower prices from Intel, and more attractive mid-range SKUs from AMD. 

AMD EPYC Processors (1P)
  Cores
Threads
Frequency (GHz) TDP Price
EPYC 7551P 32 / 64 2.0 -3.0 180W $2100
EPYC 7401P 24 / 48 2.0-3.0 155W/170W $1075
EPYC 7351P 16 / 32 2.4-2.9 155W/170W $750

Finally, AMD's single-socket SKUs – identified by a P suffix – are by far the most interesting to us and the most dangerous to Intel. It will be interesting to see how well two 12-core Xeon 5118s can compete with one EPYC 7551P. The clocks are similar, but AMD has 8 extra cores, a less complex server board, much more PCIe bandwidth, and a lower TDP.  AMD should have serious cost advantage on paper. We hope to check that in a later review.

Intel Expanding the Chipset: 10 GigE & QuickAssist Testing Notes & Benchmark Configuration
Comments Locked

219 Comments

View All Comments

  • sharath.naik - Wednesday, July 12, 2017 - link

    http://www.anandtech.com/show/10158/the-intel-xeon...
    Here is the link for you a single Xeon E5 v4 22 core does 5.3 (Dual at 5.9)jobs a day compared to dual Epyc 6.3. Ok they are 7% apart for dual socket but only 15% faster for dual epyc compared to single Xeon E5. Big Data does not do well in NUMA set up, same is the case with any regular large data applications. Try running EPYC without splitting spark into multiple processes, you will see how terrible a dual EPYC is going to be (the review mentions it but does not give a graph). Now this is terrible, to use EPYC first you need to change the way you build and run the applications and then expect 7-15% advantage vs a 2000$ CPU. It simple shows that EPYC is only use full for VMs and some synthetic tests. Any applications that deal with data can and should stay away from EPYC
  • warreo - Friday, July 14, 2017 - link

    Why are you comparing Spark 1.5 benchmarks against 2.1.1? Johan pointed out in the article why they are not comparable and why he is using the new 2.1.1 benchmark.

    The exact Dual Xeon E5 2699 v4 you are referencing that did 5.9 jobs per day in Spark 1.5 only does 4.9 jobs per day on Spark 2.1.1. If we assume a similar % gap between dual and single as it was in Spark 1.5, then a single Xeon E5 2699 v4 would be capable of only 4.4 jobs per day in Spark 2.1.1, which is a 43% difference compared to dual Epycs.

    Even leaving that aside, your exact arguments can be applied to the new Xeons as well, which are only 5% faster than the Epycs. Do you think the new Xeons suck as well?

    Same thing for splitting Spark into multiple processes and needing to re-write applications -- you also run into the exact same issue with the new Xeons (which Johan also explictly points out).

    Based on your arguments, I'm confused why you are taking aim only at Epyc and not the new Xeons. Please let me know if I'm missing something here.
  • AleXopf - Wednesday, July 12, 2017 - link

    Username checks out
  • deltaFx2 - Wednesday, July 12, 2017 - link

    "four 8core desktop dies" Oh, on the contrary. It's really a 4 die MCM server part, and each die is being sold as a desktop part. Nobody puts interconnect (fabric) on a desktop part. MCM is something intel has also done way back in the dual core era, and IBM continues to do. Don't float that canard re. desktop parts, it's just a design choice. AMD isn't trying to beat Intel in every market, just in some, and it does that. It might not win in HPC or big enterprise database (idk), but if you are a public cloud provider in the business of renting 4c8t or 8c16t VMs, AMD has a solid product. Now throw in the 128 PCIe lanes, which intel can't come close to. In fact, a 32c Naples in 1P is something that Intel has nothing to compete against for applications like storage, GPGPU, etc. The question isn't if it's good enough to run Intel out of business in the server space; that's not happening. It didn't when AMD had a superior product in Opteron. The question is, is it good enough for 5-10% market share in 2018-2019?

    "Intel cores are superior than AMD so a 28 core xeon is equal to ~40 cores if you compare again Ryzen core so this whole 28core vs 32core is a marketing trick". And yet all the numbers presented above point to the opposite. Ryzen != Epyc and i7700K != Syklake EP/SP, if that's where you're getting your numbers from. If not, present data.
  • Amiga500 - Wednesday, July 12, 2017 - link

    No surprise that the Intel employee is descending to lies and deceit to try and plaster over the chasms! They've also reverted to bribing suppliers to offer Ryzen with only crippled memory speeds too (e.g. pcspecialist.co.uk - try and get a Ryzen system with >2133 MHz memory, yet the SKL-X has up top 3600 MHz memory --- the kicker is - they used to offer Ryzen at up to 3000 MHz memory!). It would seem old habits die hard.

    Hopefully the readers are wise enough to look at the performance data and make their decisions from that.

    If OEMs are willing to bend to Intels dirty dollars, I trust customers will eventually choose to take their business elsewhere. We certainly won't be using pcspecialist again in the near future.
  • Shankar1962 - Wednesday, July 12, 2017 - link

    Look at the picture in this article and see what the big players reported when they upgraded to Skylake

    Don't hate a company for the sake of argument. The world we live today from a hardware technology standpoint is because of Intel and respect it

    https://www.google.com/amp/s/seekingalpha.com/amp/...
  • Shankar1962 - Wednesday, July 12, 2017 - link

    I agree. Intel has been a data center leader and pioneered for decades now. It has proven track record and overall platform stability consistency and strong portfolio and roadmap. With intel transforming to a data company i see that the best is yet to come as it did smart acquisitions and I believe products with IP from those aquired companies are still nnot fully integrated. Everyone loves an underdog and its clear that everyones excited as someone is getting 5% share and Intel won't be sitting....they did it in the past they will do it again:)
  • 0ldman79 - Wednesday, July 12, 2017 - link

    I find the power consumption info quite interesting, especially considering the TDP ratings for the processors.

    The platform makes a difference, though I wonder what the actual difference is. Intel and AMD have been rating their TDP differently for years now.
  • Atom11 - Wednesday, July 12, 2017 - link

    After all these tests we still know nothing about AVX512. According to the specs, the floating point should be about 2x faster on CPU with AVX512 in compare to CPU without AVX512. There should be a clear line between Gcc and Icc. Gcc compiler does not support AVX512 anyway and it otherwise also has a relatively limited vectorization support. Not using Icc means, not using the only compiler which actually supports the Intel hardware features. But it yes, it is a difficult comparison, because you need both Instructions and Software which uses those instructions optimized the best way possible and some users simply don't bother about using optimized software. It would be nice to see comparison between: GCC+ AMD and ICC+Intel. So that only compiler is changed, but also the code is written so that it is possible for it to be efficiently vectorized and threaded. What can I get on Intel, if I use best possible software stack and what can I get on AMD? The current article only answers the question: What can i get on AMD and Intel if I dont bother with software stack and optimization.
  • yuhong - Wednesday, July 12, 2017 - link

    Inphi has a press release about shipping 1 million DDR3 LR-DIMM buffers six months before the launch of Haswell-E: https://www.inphi.com/media-center/press-room/pres... I wonder how many they shipped total so far (and also Montage).

Log in

Don't have an account? Sign up now