Introducing Skylake-SP: The Xeon Scalable Processor Family

The biggest news hitting the streets today comes from the Intel camp, where the company is launching their Skylake-SP based Xeon Scalable Processor family. As you have read in Ian's Skylake-X review, the new Skylake-SP core has been rather significantly altered and improved compared to it's little brother, the original Skylake-S. Three improvements are the most striking: Intel added 768 KB of per-core L2-cache, changed the way the L3-cache works while significantly shrinking its size, and added a second full-blown 512 bit AVX-512 unit. 

On the defensive and not afraid to speak their mind about the competition, Intel likes to emphasize that AMD's Zen core has only two 128-bit FMACs, while Intel's Skylake-SP has two 256-bit FMACs and one 512-bit FMAC. The latter is only useable with AVX-512. On paper at least, it would look like AMD is at a massive disadvantage, as each 256-bit AVX 2.0 instruction can process twice as much data compared to AMD's 128-bit units. Once you use AVX-512 bit, Intel can potentially offer 32 Double Precision floating operations, or 4 times AMD's peak.  

The reality, on the other hand, is that the complexity and novelty of the new AVX-512 ISA means that it will take a long time before most software will adopt it. The best results will be achieved on expensive HPC software. In that case, the vendor (like Ansys) will ask Intel engineers to do the heavy lifting: the software will get good AVX-512 support by the expensive process of manual optimization. Meanwhile, any software that heavily relies on Intel's well-optimized math kernel libraries should also see significant gains, as can be seen in the Linpack benchmark. 

In this case, Intel is reporting 60% better performance with AVX-512 versus 256-bit AVX2. 

For the rest of us mere mortals, it will take a while before compilers will be capable of producing AVX-512 code that is actually faster than the current AVX binaries. And when they do, the result will be probably be limited, as compilers still have trouble vectorizing code from scratch. Meanwhile it is important to note that even in the best-case scenario, some of the performance advantage will be negated by the significantly lower clock speeds (base and turbo) that Intel's AVX-512 units run at due to the sheer power demands of pushing so many FLOPS. 

For example, the Xeon 8176 in this test can boost to 2.8 GHz when all cores are active. With AVX 2.0 this is reduced to 2.4 GHz (-14%), with AVX-512, the clock tumbles down to 1.9 GHz (another 20% lower). Assuming you can fill the full width of the AVX unit, each step still sees a significant performance improvement, but AVX2 to AVX-512 won't offer a full 2x performance improvement even with ideal code.

Lastly, about half of the major floating point intensive applications can be accelerated by GPUs. And many FP applications are (somewhat) limited by memory bandwidth. While those will still benefit from better AVX code, they will show diminishing returns as you move from 256-bit AVX to 512-bit AVX. So most FP applications will not achieve the kinds of gains we saw in the well-optimized Linpack binaries. 

AMD’s EPYC 7000-Series Processors Intel's New On-Chip Topology: A Mesh
Comments Locked

219 Comments

View All Comments

  • extide - Tuesday, July 11, 2017 - link

    PCPer made this same mistake -- Nehalem/Westmere used a crossbar memory bus -- not a ringbus. Only Nehalem/Westmere EX used the ringbus (the 6500/7500 series) The i7 and Xeon 5500 and 5600 series used the crossbar.
  • extide - Tuesday, July 11, 2017 - link

    Sandy Bridge brought the ringbus down to Xeon EP and client chips.
  • Yorgos - Tuesday, July 11, 2017 - link

    "With the complexity of both server hardware and especially server software, that is very little time. There is still a lot to test and tune, but the general picture is clear."

    No wonder why we see ubuntu and ancient versions of gcc and the rest of the s/w stack.
    Imagine if you tried to use debian or rhel, it would take you decades to get the review.
  • eligrey - Tuesday, July 11, 2017 - link

    Why did you omit the Turbo frequencies for the Xeon Gold 6146 and 6144?

    Intel ARK says that the 6146's turbo frequency is 4.2GHz and the 6144's is 4.5GHz.
  • eligrey - Tuesday, July 11, 2017 - link

    Oops, I mean 4.2GHz for both.
  • boozed - Tuesday, July 11, 2017 - link

    Need more Skylake-SP SKUs
  • rHardware - Tuesday, July 11, 2017 - link

    For the purley system, It's listed that you used Chipset Intel Wellsburg B0

    This information cannot be correct. Lewisburg Chipset is the name of the purley chipset. Also, B0 stepping lewisburg also wouldn't boot with the stepping of CPU you have.
  • rHardware - Tuesday, July 11, 2017 - link

    That 0200011 microcode is also very old.
  • Rickyxds - Tuesday, July 11, 2017 - link

    I'am a brazilian processors enthusiast and I'am very critic about intel and AMD processors, between 2012 and Q1 2017 AMD just doesn't existed, who bought AMD on that years, bougth just for love AMD and just it, doesn't for the price, doesn't for the high core count, doesn't for AMD is red, AMD was the worst performance processors. The A9 Apple dual core performance is better than FX 8150.

    But now I am very surprise with the aggressive AMD prices. No one here Imagined get the Ryzen 7 performance for less than $500. And I don't know if this scenario brings profit to AMD, but for the image against the intel it's wonderful.

    On the next years we will see.
  • krumme - Tuesday, July 11, 2017 - link

    Thank you for quality stuff article especially given the short time. So thank you for booting up Johan !

    Interesting and surpricing results.

Log in

Don't have an account? Sign up now