First Thoughts

Since our Optane Memory sample died after only about a day of testing, we cannot conduct a complete analysis of the product or make any final recommendations. With that said, the early indications from the benchmarks we were able to complete are mostly very positive reflections of the performance of the Intel Optane Memory.

As a cache device, the Optane Memory brought a hard drive-based system's SYSmark scores up to the level of mainstream SSDs. These averages do not capture differences in the latency distributions of the Optane cache+hard drive configuration vs a flash SSD. In the Optane+hard drive configuration, a cache hit will be almost 1000 times faster than a cache miss, resulting in a very bimodal distribution. The flash SSDs mostly occupy the territory between the performance of Optane and of the hard drive. It's possible that a mainstream flash SSD could deliver a user experience with fewer noticeable delays than the Optane caching experience with the occasional inevitable cache miss. Overall, however, the Optane cache delivers a remarkable improvement over just a hard drive, and the 32GB cache capacity we tested is clearly large enough to be of substantial use.

As a standalone drive, the Optane Memory breaks a few records that were set by the Intel Optane SSD DC P4800X enterprise drive just last week. The Optane Memory is more tuned for small transfer sizes and offers even better QD1 random read performance. These differences seem like exactly the right optimizations to make for a drive focused on client workloads. The throughput at higher queue depths is nowhere near what the P4800X delivers and falls behind what more expensive consumer SSDs can offer, but those situations make up a very small portion of client workloads. The first and only batch of synthetic tests we were able to run on the Optane Memory were derived from the enterprise SSD tests used on the Optane SSD DC P4800X, and they cast the consumer flash SSDs in an unrealistically bad light. A typical desktop user has little reason to care how well their SSD handles multiple threads performing sustained sequential transfers on a full drive, so the Optane Memory's stellar performance there should not lead users to prefer an Optane cached hard drive setup over an all solid state configuration.

The one area where we are ready to draw some conclusions is power consumption. We still need to conduct further analysis of the Optane Memory's power use under load, but its idle power situation is simple: the Optane Memory lacks any meaningful power saving mode. It is rated for 1W at idle and that's the lowest we saw it get throughout our short time testing it. 1W is something desktop users can shrug off; a typical gaming desktop dedicates more power than that to decorative LEDs. But Optane Memory is also intended for mobile use, and the first systems announced to offer Optane Memory were Lenovo ThinkPads. Adding a minimum of 1W on top of the power drawn by a mechanical hard drive will not help battery life, no matter how much faster it makes the storage system.

With Optane Memory, Intel seems to finally have the cache device they've been needing for a decade to make SSD caching viable. It's fast in spite of its low capacity, something flash based cache devices could never pull off. Optane Memory is also more affordable at $44 and $77 than Intel's previous cache devices.

With that said, however, I wonder whether it may all be too little, too late. SSD caching has some unavoidable limitations: cold caches, cache evictions when the cache proves too small, and the added complexity of a tiered setup. With those disadvantages, Optane Memory enters a market where the price of flash SSDs means there's already very little reason for consumer machines to use a mechanical hard drive as primary storage. Instead, the best case scenario here appears to be enabling the capacity benefits of tiered storage - offering nimble systems with 1TB+ of cheap storage and is presented to the user as a single drive - but without as many of the drawbacks of earlier NAND-based caches.

In some sense, Optane Memory may just be a stop-gap product for the consumer market until Intel is able to deliver usefully large Optane SSDs for consumers. But those SSDs are likely to arrive with prohibitively high prices if they ship later this year as planned. 3D XPoint memory has arrived and is poised to revolutionize parts of the enterprise storage market, but it may not be ready to have a meaningful impact on the consumer market.

Mixed Read/Write And Idle Power Consumption
Comments Locked

110 Comments

View All Comments

  • ddriver - Wednesday, April 26, 2017 - link

    It is only natural to have negative sentiments about greedy, lousy corporations because of what they do. It is nothing personal though, I do it because I am a conscious human being. Not cattle. You can throw crapple and moogle into the mix. There is no single good reason to be fond of any corporation. The bigger they are the more damage they do to humanity and the planet as a whole.

    In other news, water is wet!
  • eddman - Wednesday, April 26, 2017 - link

    You are not fooling anyone.
  • eddman - Wednesday, April 26, 2017 - link

    ...and you are so blind by your hatred that you dismiss every single thing that these companies do. You are not rational in the slightest but do like to boast about how great you are.
  • Reflex - Tuesday, April 25, 2017 - link

    Nailed it eddman. Because it does not personally solve ddriver's problems, or because it comes from the wrong brand, its an epic disaster. The funny thing here is I agree this is not a revolution, at least not yet, but the incessant bashing and inability to acknowledge that it has its uses and those use cases are likely to only grow demonstrates the bias involved.
  • Reflex - Tuesday, April 25, 2017 - link

    To the insinuation that Optane may somehow be relabeled SLC NAND, I went and did a little research/consultation. All NAND requires writing to blocks, Optane can support bit level writes (expected in DIMM configurations), which is a major advantage over NAND and not technically possible with NAND. It was also pointed out that if Optane was simply disguised SLC, despite the technical impossibility, it would mean that Intel had engaged in financial fraud by materially misrepresenting its technology, capabilities and long-term expectations to investors.

    Thanks to Joel Hruska for looking into it for me.

    More info here: https://arstechnica.com/gadgets/2017/04/intel-opta...

    More from Joel here: https://www.extremetech.com/author/jhruska
  • Reflex - Monday, April 24, 2017 - link

    OMG it's the fastest product on the market in its class but because I choose to interpret the early marketing as applying to the first gen product it totally sucks! I refuse to benefit from drastically better performance because Intel *dared* to speak to its potential performance and didn't deliver that in the first product!

    In fact, I am so enraged I'm ripping out all my existing SSD's and replacing them with Quantum Bigfoot drives in protest.
  • Drumsticks - Monday, April 24, 2017 - link

    It's probably because Intel dared to do something innovative again, and we can't possibly give credit where it's due, can we? If it was Samsung, I bet it would just be Samsung being Samsung. Slap the blue name on top, and it's cool to criticize whatever you can, even in the face of hard numbers. Make sure you also include an edgy name like "Hypetane" to really drive your point home.
  • Reflex - Monday, April 24, 2017 - link

    To be fair if it were Samsung we'd get a lecture on the oppression of North Korea mixed in there somewhere along with a conspiracy theory about the south being a puppet state not permitted to succeed in the face of America.
  • jabbadap - Monday, April 24, 2017 - link

    Well I don't want to degrade intel's efforts on this. But it's intel/micron co-operation who have engineered this and I would even guess a bit further that science behind this is more micron tech than intels.
  • Drumsticks - Monday, April 24, 2017 - link

    That's fair, and Micron definitely deserves credit as well. I'm sure they'll get their own when QuantX comes out, hopefully sometime this year. I suspect that the R&D was split very evenly, though; Intel has always been good at doing things "well" in the fab; Micron had excelled at doing them "cheaply" which is one reason the venture was reasonably successful. Plus, I feel it would be hard to collaborate on R&D together for 10 years and successfully say "we did this together" to the public, if one side (Micron or Intel) did most of the work. I guess we'll never know, though.

Log in

Don't have an account? Sign up now