Thoughts and Comparisons

Throughout AMD's road to releasing details on Zen, we have had a chance to examine the information on the microarchitecture often earlier than we had expected to each point in the Zen design/launch cycle. Part of this is due to the fact that internally, AMD is very proud of their design, but some extra details (such as the extent of XFR, or the size of the micro-op cache), AMD has held close to its chest until the actual launch. With the data we have at hand, we can fill out a lot of information for a direct comparison chart to AMD’s last product and Intel’s current offerings.

CPU uArch Comparison
  AMD Intel
  Zen
8C/16T
2017
Bulldozer
4M / 8T
2010
Skylake
Kaby Lake
4C / 8T
2015/7
Broadwell
8C / 16T
2014
L1-I Size 64KB/core 64KB/module 32KB/core 32KB/core
L1-I Assoc 4-way 2-way 8-way 8-way
L1-D Size 32KB/core 16KB/thread 32KB/core 32KB/core
L1-D Assoc 8-way 4-way 8-way 8-way
L2 Size 512KB/core 1MB/thread 256KB/core 256KB/core
L2 Assoc 8-way 16-way 4-way 8-way
L3 Size 2MB/core 1MB/thread >2MB/cire 1.5-3MB/core
L3 Assoc 16-way 64-way 16-way 16/20-way
L3 Type Victim Victim Write-back Write-back
L0 ITLB Entry 8 - - -
L0 ITLB Assoc ? - - -
L1 ITLB Entry 64 72 128 128
L1 ITLB Assoc ? Full 8-way 4-way
L2 ITLB Entry 512 512 1536 1536
L2 ITLB Assoc ? 4-way 12-way 4-way
L1 DTLB Entry 64 32 64 64
L1 DTLB Assoc ? Full 4-way 4-way
L2 DTLB Entry 1536 1024 - -
L2 DTLB Assoc ? 8-way - -
Decode 4 uops/cycle 4 Mops/cycle 5 uops/cycle 4 uops/cycle
uOp Cache Size 2048 - 1536 1536
uOp Cache Assoc ? - 8-way 8-way
uOp Queue Size ? - 128 64
Dispatch / cycle 6 uops/cycle 4 Mops/cycle 6 uops/cycle 4 uops/cycle
INT Registers 168 160 180 168
FP Registers 160 96 168 168
Retire Queue 192 128 224 192
Retire Rate 8/cycle 4/cycle 8/cycle 4/cycle
Load Queue 72 40 72 72
Store Queue 44 24 56 42
ALU 4 2 4 4
AGU 2 2 2+2 2+2
FMAC 2x128-bit 2x128-bit
2x MMX 128-bit
2x256-bit 2x256-bit

Bulldozer uses AMD-coined macro-ops, or Mops, which are internal fixed length instructions and can account for 3 smaller ops. These AMD Mops are different to Intel's 'macro-ops', which are variable length and different to Intel's 'micro-ops', which are simpler and fixed-length.

Excavator has a number of improvements over Bulldozer, such as a larger L1-D cache and a 768-entry L1 BTB size, however we were never given a full run-down of the core in a similar fashion and no high-end desktop version of Excavator will be made.

This isn’t an exhaustive list of all features (thanks to CPU WorldReal World Tech and WikiChip for filling in some blanks) by any means, and doesn’t paint the whole story. For example, on the power side of the equation, AMD is stating that it has the ability to clock gate parts of the core and CCX that are not required to save power, and the L3 runs on its own clock domain shared across the cores. Or the latency to run certain operations, which is critical for workflow if a MUL operation takes 3, 4 or 5 cycles to complete. We have been told that the FPU load is two cycles quicker, which is something. The latency in the caches is also going to feature heavily in performance, and all we are told at this point is that L2 and L3 are lower latency than previous designs.

A number of these features we’ve already seen on Intel x86 CPUs, such as move elimination to reduce power, or the micro-op cache. The micro-op cache is a piece of the puzzle we wanted to know more about from day one, especially the rate at which we get cache hits for a given workload. Also, the use of new instructions will adjust a number of workloads that rely on them. Some users will lament the lack of true single-instruction AVX-2 support, however I suspect AMD would argue that the die area cost might be excessive at this time. That’s not to say AMD won’t support it in the future – we were told quite clearly that there were a number of features originally listed internally for Zen which didn’t make it, either due to time constraints or a lack of transistors.

We are told that AMD has a clear internal roadmap for CPU microarchitecture design over the next few generations. As long as we don’t stay for so long on 14nm similar to what we did at 28/32nm, with IO updates over the coming years, a competitive clock-for-clock product (even to Broadwell) with good efficiency will be a welcome return.

Power, Performance, and Pre-Fetch: AMD SenseMI Chipsets and Motherboards
Comments Locked

574 Comments

View All Comments

  • theuglyman0war - Saturday, March 4, 2017 - link

    I'd like to see a lot more older i7 extreme editions covered all the way to westmere so I can sell clients on new builds with such a comparison.
  • mapesdhs - Sunday, March 5, 2017 - link

    Which older i7s interest you specifically?
  • theuglyman0war - Saturday, March 4, 2017 - link

    Checking what I paid last month for i7-7700k at Microcenter...
    Although I did get the motherboard combo price sale they "usually" offer...
    The supposed $60 off for $319 is the cheapest price I found with a quick survey of new egg, amazon etc... And only $20 less then what I paid! Hardly A slashed priced answer shot across the bow by Intel! Not by a long shot!
    I thought I was going to recommend the new cheap price to all my customer's new builds but I am pushing RYZEN and AM4 for a real combined price that makes a difference. ( the cheap price for enthusiast Am4 is enticing but the loss of PCI lanes is of concern for extreme cpu comparison anyway. Not so much compared to i7-7700k though which brings the comparison back to 16 lane parity! )
  • theuglyman0war - Saturday, March 4, 2017 - link

    Could anyone actually point me to the amazing slashed deals that "BEAT" what I couldn't get last month by a long shot?

    ( which was $349 BEFORE rebate. In other words it's not like there were not sales last month as well. And I see nothing now that really amounts to AMAZING compared to last month? )

    Pretty dam insulting from somewhere in the pipe? Not sure if it's Intel. Or it's resellers clinging on to greedy margins not reflecting the savings to save their own ass's and bottom line due to stock considerations? Which iz no excuse considering the writing was on the wall. Someone needs to do a lot better. A heck of a lot better. Particularly considering I was thinking I could jes laff off AMD with an Intel savings and now have egg on my face! :)
  • rpns - Saturday, March 4, 2017 - link

    The 'Test Bed Setup' section could do with some more details. E.g. what BIOS version? Windows 10 build version? Any notable driver versions?

    These details aren't useful just now, but also when looking back at the review a few months down the line.
  • jorkevyn - Saturday, March 4, 2017 - link

    why they don't get 4 channel for DDR4 memory? I think, if you get that you will may be the real I7 6950K Killer
  • sedra - Saturday, March 4, 2017 - link

    have a look at this:
    "Many software programmers consider Intel's compiler the best optimizing compiler on the market, and it is often the preferred compiler for the most critical applications. Likewise, Intel is supplying a lot of highly optimized function libraries for many different technical and scientific applications. In many cases, there are no good alternatives to Intel's function libraries.

    Unfortunately, software compiled with the Intel compiler or the Intel function libraries has inferior performance on AMD and VIA processors. The reason is that the compiler or library can make multiple versions of a piece of code, each optimized for a certain processor and instruction set, for example SSE2, SSE3, etc. The system includes a function that detects which type of CPU it is running on and chooses the optimal code path for that CPU. This is called a CPU dispatcher. However, the Intel CPU dispatcher does not only check which instruction set is supported by the CPU, it also checks the vendor ID string. If the vendor string says "GenuineIntel" then it uses the optimal code path. If the CPU is not from Intel then, in most cases, it will run the slowest possible version of the code, even if the CPU is fully compatible with a better version."

    http://www.agner.org/optimize/blog/read.php?i=49&a...
  • HomeworldFound - Saturday, March 4, 2017 - link

    Everyone here already knew that ten years ago.
  • Notmyusualid - Sunday, March 5, 2017 - link

    Indeed it was.
  • sedra - Sunday, March 5, 2017 - link

    it is worth to bring it up now.

Log in

Don't have an account? Sign up now