Testing Methodology

Although the testing of a cooler appears to be a simple task, that could not be much further from the truth. Proper thermal testing cannot be performed with a cooler mounted on a single chip, for multiple reasons. Some of these reasons include the instability of the thermal load and the inability to fully control and or monitor it, as well as the inaccuracy of the chip-integrated sensors. It is also impossible to compare results taken on different chips, let alone entirely different systems, which is a great problem when testing computer coolers, as the hardware changes every several months. Finally, testing a cooler on a typical system prevents the tester from assessing the most vital characteristic of a cooler, its absolute thermal resistance.

The absolute thermal resistance defines the absolute performance of a heatsink by indicating the temperature rise per unit of power, in our case in degrees Celsius per Watt (°C/W). In layman's terms, if the thermal resistance of a heatsink is known, the user can assess the highest possible temperature rise of a chip over ambient by simply multiplying the maximum thermal design power (TDP) rating of the chip with it. Extracting the absolute thermal resistance of a cooler however is no simple task, as the load has to be perfectly even, steady and variable, as the thermal resistance also varies depending on the magnitude of the thermal load. Therefore, even if it would be possible to assess the thermal resistance of a cooler while it is mounted on a working chip, it would not suffice, as a large change of the thermal load can yield much different results.

Appropriate thermal testing requires the creation of a proper testing station and the use of laboratory-grade equipment. Therefore, we created a thermal testing platform with a fully controllable thermal energy source that may be used to test any kind of cooler, regardless of its design and or compatibility. The thermal cartridge inside the core of our testing station can have its power adjusted between 60 W and 340 W, in 2 W increments (and it never throttles). Furthermore, monitoring and logging of the testing process via software minimizes the possibility of human errors during testing. A multifunction data acquisition module (DAQ) is responsible for the automatic or the manual control of the testing equipment, the acquisition of the ambient and the in-core temperatures via PT100 sensors, the logging of the test results and the mathematical extraction of performance figures.

Finally, as noise measurements are a bit tricky, their measurement is being performed only manually. Fans can have significant variations in speed from their rated values, thus their actual speed during the thermal testing is being acquired via a laser tachometer. The fans (and pumps, when applicable) are being powered via an adjustable, fanless desktop DC power supply and noise measurements are being taken 1 meter away from the cooler, in a straight line ahead from its fan engine. At this point we should also note that the Decibel scale is logarithmic, which means that roughly every 3 dB(A) the sound pressure doubles. Therefore, the difference of sound pressure between 30 dB(A) and 60 dB(A) is not "twice as much" but nearly a thousand times greater. The table below should help you cross-reference our test results with real-life situations.

The noise floor of our recording equipment is 30.2-30.4 dB(A), which represents a medium-sized room without any active noise sources. All of our acoustic testing takes place during night hours, minimizing the possibility of external disruptions.

<35dB(A) Virtually inaudible
35-38dB(A) Very quiet (whisper-slight humming)
38-40dB(A) Quiet (relatively comfortable - humming)
40-44dB(A) Normal (humming noise, above comfortable for a large % of users)
44-47dB(A)* Loud* (strong aerodynamic noise)
47-50dB(A) Very loud (strong whining noise)
50-54dB(A) Extremely loud (painfully distracting for the vast majority of users)
>54dB(A) Intolerable for home/office use, special applications only.

*noise levels above this are not suggested for daily use

The Phononic HEX 2.0 Thermoelectric Cooler & Software Testing results, maximum fan speed (12 Volts)
Comments Locked

48 Comments

View All Comments

  • MrSpadge - Tuesday, September 27, 2016 - link

    Cooling at low power consumption levels (up to ~30 W) is very easy with modern coolers, unless you are restricting the hot air exchange with the environment (those HTPCs which for some reason have to be super small). If you're interested in such cases it would make more sense to test the case & envirnonment rather than the cooler itself.

    60 - 100 - 150 W covers typical CPUs under load very well, with 200 - 250 W representing overclocked socket 2011 chips and 340 W the extreme.
  • BurntMyBacon - Monday, September 26, 2016 - link

    It would be interesting to see the crossover point between half on and full on. The aircooler isn't particularly large and doesn't seem to dissipate heat fast enough to keep up with the TEC. While providing a larger delta between the hot and cold plates, adding an extra 20W for the air cooler to deal with can, in some circumstances, actually increase the steady state temperature.

    A good test (that I'm not sure this kit would let you run) would be if you could test several TDP points at both half (20W) and full (40W) TEC power. I imagine you would see full power come in cooler up to the point that the air cooler starts failing to keep up. Switching to half TEC power would then be more efficient as it would dip back under that threshold. Once you increase thermal output to reach that threshold again, it would be interesting to see which mode works better with an overburdened air cooler. In the past, I've was told to use TECs with water cooling systems as air coolers at the time always got overburdened too early.
  • Avenger762 - Monday, September 26, 2016 - link

    Once again, this thing is no match for my old CM V10. BTW the V10 in my tower has been running since 2006 with the exception of a couple of motherboard and fan replacements.
  • VeauX - Monday, September 26, 2016 - link

    it would be nice to see it compared to :
    1 - same size air cooler (comparable cu.cm or length / height / width)
    2 - same price coolers including AIO Liquid Coolers
  • HomeworldFound - Monday, September 26, 2016 - link

    I used to own a Thermaltake Subzero 4g Thermoelectric Cooler, used on a Pentium 4. This does seem like an evolved version of that. The Thermaltake used up a PCI slot and was oversized by 3/4 of an inch. There wasn't any condensation to deal with but I can't really say that it worked well.
  • andychow - Monday, September 26, 2016 - link

    Ask any physicist, and they will explain to you why thermoelectric cooling is a terrible idea. It's only if you need a specific solution, such as bellow ambient. Otherwise, it's super inefficient.
  • powerarmour - Monday, September 26, 2016 - link

    Yo dawg, I heard you need a cooler to cool your cooler?
  • RaistlinZ - Monday, September 26, 2016 - link

    I was interested in this until I saw the performance.

    Then I saw the price, and became even less interested.
  • benzosaurus - Monday, September 26, 2016 - link

    In which we learn that "refrigeration" and "heat dissipation" are distinct and incompatible concepts.
  • jlk440 - Monday, September 26, 2016 - link

    Thanks for an interesting review. I'm puzzled by your reversal of the meaning of thermal resistance. Lower number = lower resistance = fewer degrees difference per watt of heat. For heatsinks, you want thermal resistance to be LOW, which means heat conductivity is HIGH. For some reason your terminology incorrectly calls lower resistance numbers "higher resistance", so maybe you mean higher conductivity (the opposite of resistance).

Log in

Don't have an account? Sign up now