Testing Methodology

Although the testing of a cooler appears to be a simple task, that could not be much further from the truth. Proper thermal testing cannot be performed with a cooler mounted on a single chip, for multiple reasons. Some of these reasons include the instability of the thermal load and the inability to fully control and or monitor it, as well as the inaccuracy of the chip-integrated sensors. It is also impossible to compare results taken on different chips, let alone entirely different systems, which is a great problem when testing computer coolers, as the hardware changes every several months. Finally, testing a cooler on a typical system prevents the tester from assessing the most vital characteristic of a cooler, its absolute thermal resistance.

The absolute thermal resistance defines the absolute performance of a heatsink by indicating the temperature rise per unit of power, in our case in degrees Celsius per Watt (°C/W). In layman's terms, if the thermal resistance of a heatsink is known, the user can assess the highest possible temperature rise of a chip over ambient by simply multiplying the maximum thermal design power (TDP) rating of the chip with it. Extracting the absolute thermal resistance of a cooler however is no simple task, as the load has to be perfectly even, steady and variable, as the thermal resistance also varies depending on the magnitude of the thermal load. Therefore, even if it would be possible to assess the thermal resistance of a cooler while it is mounted on a working chip, it would not suffice, as a large change of the thermal load can yield much different results.

Appropriate thermal testing requires the creation of a proper testing station and the use of laboratory-grade equipment. Therefore, we created a thermal testing platform with a fully controllable thermal energy source that may be used to test any kind of cooler, regardless of its design and or compatibility. The thermal cartridge inside the core of our testing station can have its power adjusted between 60 W and 340 W, in 2 W increments (and it never throttles). Furthermore, monitoring and logging of the testing process via software minimizes the possibility of human errors during testing. A multifunction data acquisition module (DAQ) is responsible for the automatic or the manual control of the testing equipment, the acquisition of the ambient and the in-core temperatures via PT100 sensors, the logging of the test results and the mathematical extraction of performance figures.

Finally, as noise measurements are a bit tricky, their measurement is being performed only manually. Fans can have significant variations in speed from their rated values, thus their actual speed during the thermal testing is being acquired via a laser tachometer. The fans (and pumps, when applicable) are being powered via an adjustable, fanless desktop DC power supply and noise measurements are being taken 1 meter away from the cooler, in a straight line ahead from its fan engine. At this point we should also note that the Decibel scale is logarithmic, which means that roughly every 3 dB(A) the sound pressure doubles. Therefore, the difference of sound pressure between 30 dB(A) and 60 dB(A) is not "twice as much" but nearly a thousand times greater. The table below should help you cross-reference our test results with real-life situations.

The noise floor of our recording equipment is 30.2-30.4 dB(A), which represents a medium-sized room without any active noise sources. All of our acoustic testing takes place during night hours, minimizing the possibility of external disruptions.

<35dB(A) Virtually inaudible
35-38dB(A) Very quiet (whisper-slight humming)
38-40dB(A) Quiet (relatively comfortable - humming)
40-44dB(A) Normal (humming noise, above comfortable for a large % of users)
44-47dB(A)* Loud* (strong aerodynamic noise)
47-50dB(A) Very loud (strong whining noise)
50-54dB(A) Extremely loud (painfully distracting for the vast majority of users)
>54dB(A) Intolerable for home/office use, special applications only.

*noise levels above this are not suggested for daily use

The Phononic HEX 2.0 Thermoelectric Cooler & Software Testing results, maximum fan speed (12 Volts)
Comments Locked

48 Comments

View All Comments

  • Communism - Monday, September 26, 2016 - link

    The best way to do long term below ambient CPU or GPU cooling is to attach a mini-split (google it if you don't know what the term means) to a water cooling loop attached with a copper to copper [imagine something similar to interface between the IHS and the contact plate of a cooler] connection (To interface the mini-split to the water cooling loop without any fuss).

    This will simultaneously cool your CPU/GPU below ambient for extended periods of time while piping the heat directly outside your home.
  • hybrid2d4x4 - Monday, September 26, 2016 - link

    This is more of a comment on your testing platform than this review, but it seems to me that your current setup has a few shortcomings.
    1) The testing platform isn't close enough to simulating the sockets of mobos to give any meaningful comment on how good the mounting mechanism is on the cooler. This is especially true of AMD socket.
    2) The operating range for your thermal load isn't well suited to represent CPUs. IMO, it would be infinitely more useful to have something that ranges from 5-10W (~the idle state of a modern CPU if not less) to 100W (or whatever actual power draw an enthusiast OC setup would be). While interesting in an academic sense, testing up to 340W is completely irrelevant and beyond the design targets that these coolers were aiming for.
  • BurntMyBacon - Monday, September 26, 2016 - link

    AMD FX-9000 series processors are rated for 220W. Processors consume more power at an exponential rate as more voltage is applied. Perhaps 340W is a bit much, but not as far off as you seem to think.

    That said, I would like to put in another vote for representing more lower power gradients. Common TDPs are something like 5W, 15W, 25W, 45W, 65W, 95W, 125W, and 140W. Higher TDPs like 180W and 220W are also present, though less common. You don't need to hit all of these TDPs, but just 60W probably isn't a good representation for everything under 100W.
  • DanNeely - Monday, September 26, 2016 - link

    The crazy high TDPs are also reachable with aggressive overclocking and high end cooling.
  • Sushisamurai - Monday, September 26, 2016 - link

    I too second this opinion. I would like to see more temp gradients around the 60, 80, 100, 120, 140W of usage... A graph for these things would be nice if time was permitted, as when the author mentions thermal resistance/performance falling off, he's not very specific at what point does it "fall off" (eg: is it competitive at 60-100 but falls off at >120?). I imagine a lot of people use this site's data and opinions to shop for products, and having more gradients to align with purchase decisions would be nice. I know I have a 80W stock load, 120W Oc, 140W stock and 220-240W loads. Extrapolating your data is doable, but I think not everyone can. My re-verification numbers on my home hardware #'s are similar to the extrapolations and your test results, so I thank you.
  • eldakka - Tuesday, September 27, 2016 - link

    I'd also like to see lower TDP measurements. I'm not thinking of overclocking situations, but more HTPC-type situations, where with a good, quiet cooler you might be able to put a more powerful processor in the HTPC while still remaining quiet.

    This thing being chromed might look pretty cool in a HTPC sitting under a telly...a slimline case with a hole cut in the top for so the fins stick out the top, like a blower sticking out of the bonnet (hood) of a car ;)
  • hybrid2d4x4 - Tuesday, September 27, 2016 - link

    Wow, thanks for that eye opener! I assumed the most power-hungry CPU you can buy today that's not AMD from a few gens ago was 95W. 220W! What a beast...
  • Vayra - Monday, September 26, 2016 - link

    Well, I for one am completely uninterested in idle temps, because given a large enough heatsink you can likely even passively cool that.

    It is much more interesting and informative to have 'over the top' TDPs rather than a slew of low TDPs because that is when cooling starts to struggle. For any non-OC'd CPU, you can suffice with the regular boxed cooler and it will keep it safe from throttling 99% of the time, or at least close enough to not matter at all.

    Typical mid range consumer TDP is 65w up to 95w for a quad core. So the 60w and 100w very clearly represent the majority of use cases and non-OC situations. Lower TDP is irrelevant - all coolers will perform as good, or better, at lower TDP - this enters the region of 'who cares' because there are literally zero benefits to running very low temp at low. Temperatures matter when they pass the 50-60 C barrier because they then *might* start influencing current leakage. Below that temperature, it's basically a non issue on all counts.
  • DanNeely - Tuesday, September 27, 2016 - link

    While its true that all large coolers will do well at <60W, low wattage desktop CPUs (eg Intel's 35W series) are often used in slimline mITX cases where even something like Intel's stock cooler is too large to fit. Temperature/noise tradeoffs there become an important consideration again; as do idle core temperatures. That would be a different set of testing ranges than the one that E. Fylladitakis currently runs; and more inline with what Silent PC Review authors test.
  • Vayra - Monday, September 26, 2016 - link

    Well, I for one am completely uninterested in idle temps, because given a large enough heatsink you can likely even passively cool that.

    It is much more interesting and informative to have 'over the top' TDPs rather than a slew of low TDPs because that is when cooling starts to struggle. For any non-OC'd CPU, you can suffice with the regular boxed cooler and it will keep it safe from throttling 99% of the time, or at least close enough to not matter at all.

    Typical mid range consumer TDP is 65w up to 95w for a quad core. So the 60w and 100w very clearly represent the majority of use cases and non-OC situations. Lower TDP is irrelevant - all coolers will perform as good, or better, at lower TDP - this enters the region of 'who cares' because there are literally zero benefits to running very low temp at low. Temperatures matter when they pass the 50-60 C barrier because they then *might* start influencing current leakage. Below that temperature, it's basically a non issue on all counts.

Log in

Don't have an account? Sign up now