Testing Methodology

Although the testing of a cooler appears to be a simple task, that could not be much further from the truth. Proper thermal testing cannot be performed with a cooler mounted on a single chip, for multiple reasons. Some of these reasons include the instability of the thermal load and the inability to fully control and or monitor it, as well as the inaccuracy of the chip-integrated sensors. It is also impossible to compare results taken on different chips, let alone entirely different systems, which is a great problem when testing computer coolers, as the hardware changes every several months. Finally, testing a cooler on a typical system prevents the tester from assessing the most vital characteristic of a cooler, its absolute thermal resistance.

The absolute thermal resistance defines the absolute performance of a heatsink by indicating the temperature rise per unit of power, in our case in degrees Celsius per Watt (°C/W). In layman's terms, if the thermal resistance of a heatsink is known, the user can assess the highest possible temperature rise of a chip over ambient by simply multiplying the maximum thermal design power (TDP) rating of the chip with it. Extracting the absolute thermal resistance of a cooler however is no simple task, as the load has to be perfectly even, steady and variable, as the thermal resistance also varies depending on the magnitude of the thermal load. Therefore, even if it would be possible to assess the thermal resistance of a cooler while it is mounted on a working chip, it would not suffice, as a large change of the thermal load can yield much different results.

Appropriate thermal testing requires the creation of a proper testing station and the use of laboratory-grade equipment. Therefore, we created a thermal testing platform with a fully controllable thermal energy source that may be used to test any kind of cooler, regardless of its design and or compatibility. The thermal cartridge inside the core of our testing station can have its power adjusted between 60 W and 340 W, in 2 W increments (and it never throttles). Furthermore, monitoring and logging of the testing process via software minimizes the possibility of human errors during testing. A multifunction data acquisition module (DAQ) is responsible for the automatic or the manual control of the testing equipment, the acquisition of the ambient and the in-core temperatures via PT100 sensors, the logging of the test results and the mathematical extraction of performance figures.

Finally, as noise measurements are a bit tricky, their measurement is being performed only manually. Fans can have significant variations in speed from their rated values, thus their actual speed during the thermal testing is being acquired via a laser tachometer. The fans (and pumps, when applicable) are being powered via an adjustable, fanless desktop DC power supply and noise measurements are being taken 1 meter away from the cooler, in a straight line ahead from its fan engine. At this point we should also note that the Decibel scale is logarithmic, which means that roughly every 3 dB(A) the sound pressure doubles. Therefore, the difference of sound pressure between 30 dB(A) and 60 dB(A) is not "twice as much" but nearly a thousand times greater. The table below should help you cross-reference our test results with real-life situations.

The noise floor of our recording equipment is 30.2-30.4 dB(A), which represents a medium-sized room without any active noise sources. All of our acoustic testing takes place during night hours, minimizing the possibility of external disruptions.

<35dB(A) Virtually inaudible
35-38dB(A) Very quiet (whisper-slight humming)
38-40dB(A) Quiet (relatively comfortable - humming)
40-44dB(A) Normal (humming noise, above comfortable for a large % of users)
44-47dB(A)* Loud* (strong aerodynamic noise)
47-50dB(A) Very loud (strong whining noise)
50-54dB(A) Extremely loud (painfully distracting for the vast majority of users)
>54dB(A) Intolerable for home/office use, special applications only.

*noise levels above this are not suggested for daily use

The Phononic HEX 2.0 Thermoelectric Cooler & Software Testing results, maximum fan speed (12 Volts)
Comments Locked

48 Comments

View All Comments

  • DanNeely - Monday, September 26, 2016 - link

    Do they have an plans to make a 120/140mm version and a larger TEC? The way this struggles above relatively low loads makes it a bust for the OC crowd who might otherwise be tempted to buy it.
  • zepi - Monday, September 26, 2016 - link

    Indeed, would be interesting to see this being bundled with NH-D15 level cooler.
  • LordConrad - Tuesday, September 27, 2016 - link

    I would also like to see the TEC with a better air cooler attached.
  • saratoga4 - Monday, September 26, 2016 - link

    Or one integrated into a watercooling setup. The main problem is that the TEC COP of performance is something like 1.0 to 1.5 watt of cooling per 1 watt of energy spent on the TEC, so you end up needing 1.5-2.0 watts of radiator for every watt of CPU heat generated. A dual 120 radiator ought to handle that easily.
  • MrSpadge - Tuesday, September 27, 2016 - link

    Chilled water with a phase change (refrigerator) cooler is way more efficient.
  • JesseKramer - Wednesday, September 28, 2016 - link

    Packaging would be more of an issue though I would think.

    There is lots of infrastructure set up around radiators inside cases.

    Adding a TEC into an AIO could be a very interesting product
  • Lolimaster - Monday, September 26, 2016 - link

    Nothing beast using air cooler and undervolting your cpu and maybe drop 100-300Mhz to maximize the gain. Do you really notice the tiny extra performance of OC while wasting tons of watts and heat?
  • damianrobertjones - Monday, September 26, 2016 - link

    Yes! I, as a child, often heard scary stories of the 'Nothing Beast'!
  • AndrewJacksonZA - Monday, September 26, 2016 - link

    *chuckle*
  • Death666Angel - Tuesday, September 27, 2016 - link

    I do. Running my 4770k @ ~3.4GHz like you suggest vs. the 4.5GHz it currently runs at would not save much energy on normal tasks (I OC with an adaptive offset, so 800MHz use ~ 0.71V). Even in many modern games (The Witcher 3, Battlefield 4), I would get lower FPS with such a CPU clock and my R9 290X, which is more CPU dependant than typical Nvidia graphics cards. And doing video encoding of my Blu Ray rips would be painfully slow, scaling nearly linearly with clockspeed. The ~50 to 90W I spend more on intensive tasks is worth it for me, since I can saturate 110FPS with my monitor @ 110Hz and save time during encoding (which make total power consumption per rip not as bad as it would seem).

Log in

Don't have an account? Sign up now