Energy Consumption

A large part of the server market is very sensitive to performance-per-watt. That includes the cloud vendors/hosts. For a smaller part of the market, top performance is more important than the performance/watt ratio. Indeed, for financial trading, big data analyses, large databases, and most HPC servers, total performance is the top priority. Energy consumption should not be outrageous, but it is not the most important concern.

We tested the energy consumption of our servers for a one-minute period in several situations. The first one is the point where the tested server performs best in MySQL: the highest throughput just before the response time goes up significantly. Then we look at the point where throughput is the highest (no matter what response time). This is the situation where the CPU is fully loaded.

SKU TDP
(on paper)
spec
Idle
Server

W
MySQL
Best Throughput
at Lowest Resp. Time
(W)
MySQL
Max Throughput
(W)
Transaction
/s
Tr/watt
IBM POWER8 S812LC 190 W 221 259 260 14482 55
Xeon E5-2699 v4 145 W 67 213 235 18997 89
Xeon E5-2690 v3 135 W 84 249 254 11741 47

Throughput and single threaded performance were the priorities for designing POWER8. Power consumption stood probably much lower on the list, way behind RAS. The idle power shows us that you should not use the POWER8 in applications that run at low load for long periods.

Intel's "Broadwell-EP" (Xeon E5 v4), by comparison, is the clear victor when it comes to performance per watt, and even without looking at Intel's background, it's clear from the data alone that more thought was put into that aspect.

However, considering that the POWER8 was launched around the same time as Intel Haswell, IBM's multicore delivers a lot of integer performance per watt of energy it consumes. In fact, despite the power gobbling Centaur chips, despite the fact that MySQL is not the most POWER8 optimized application, IBM's medium range POWER8 is capable of defeating Intel's Haswell. While this is less relevant to the server buyer today, it does show that IBM's engineering capabilities are competitive with Intel, which is good news for the upcoming POWER9 chip. The POWER9 chip will be the first POWER chip which has specific SKUs for the affordable scale out servers.

Spark Benchmarking Closing Thoughts
Comments Locked

49 Comments

View All Comments

  • JohanAnandtech - Sunday, September 25, 2016 - link

    Thanks Jesper. Looks like I will have to spend even more time on that system :-). And indeed, out of the box performance is important if IBM ever wants to get a piece of the x86 market.
  • luminarian - Thursday, September 15, 2016 - link

    It was my understanding that the SMT mode on the power8 could be changed. Depending on the type of work this would make a giant difference, especially with mysql/mariadb that are limited to 1 process/thread per connection.

    With databases the real winner would be with one that supports parallel queries, such as postgresql 9.6, db2, oracle, etc.

    Also yer bench mark very easily could be limiting the power8 if its not opening enough connections to fill out the number of threads that thing can handle, remember mysql/mariaDB are 1 process/thread per connection. Alot of database bench marks default to a small number of connections, this thing has 160 threads with the dual 10 core. I would suggest trying to run that same benchmark again but do it at the same time from multiple client machines. See if the bench takes a larger dip when a second client machine runs the same bench or if the bench shows similar figures(granted this might hit hd io limit on the power8 server).

    So yea, that and try SMT-2 and SMT-4 modes.
  • JohanAnandtech - Friday, September 16, 2016 - link

    Hi, I tried SMT-4, throughput was about 25% worse: 11k instead 14k+. 95th perc response time was better: 3.7 ms.
  • JohanAnandtech - Friday, September 16, 2016 - link

    updated the MySQL graphs with SMT-4 data. Our Spark tests gets worse with SMT-4 and that is also true for SPECjbb.
  • luminarian - Friday, September 16, 2016 - link

    Awesome, Thanks for the response.
  • Meteor2 - Friday, September 16, 2016 - link

    The HPC potential is awesome. You can really see why Oak Ridge chose POWER9 and Volta.
  • Communism - Sunday, September 18, 2016 - link

    Pretty sure most of the reason for that is due to Intel blocking every attempt Nvidia makes at getting a high bandwidth interface bolted onto a Xeon.

    Given that one of the main reasons that Intel blocked Nvidia's chipset business way back in the day was to try to limit the ability of other companies bolting on high bandwidth accelerators onto Intel chips (Presumably to protect their own initiatives in that space).
  • Klimax - Saturday, September 17, 2016 - link

    Not terribly impressive. You have to get SW to paly nice and spend time to fine tune it to outperform Intel and it will cost you in power and cooling. More like "yes, if you get quite bigger TDP you get bit more power". And it won't be terribly good in many cases. (Like public facing service where latency is critical)

    Maybe if you are in USA and can waste admins and devs time and waste a lot on cooling and electricity then maybe. Otherwise why bother...
  • SarahKerrigan - Sunday, September 18, 2016 - link

    I don't see this as a bad result. This is a 22nm processor, over two years old, and it beats Haswell-EP (which is newer) on efficiency. Broadwell-EP is brand new, and P9 should come out well before the end of BDW-EP's lifecycle.
  • Kevin G - Sunday, September 18, 2016 - link

    Some of the POWER9 chips will be out next year though is suspect that the scale-up models maybe an early 2018 part. Considering that those chips go into IBM's big iron Unix servers, they tend to launch a bit later than the low end models so it isn't game changing.

    The real question is when SkyLake-EP/EX will launch and in comparison to the scale-out POWER9 chips. I was expecting a first half of 2017 for the Intel parts but I have no reference as to when to expect the POWER9 SO chips. Thus there is a chance Intel can come out first.

    Intel also wants a quick transition to SkyLake-EP/EX as they unify those to lines to some extent and provide some major platform improvements. I'm thinking Broadwell-EP/EX will have a relatively short life span compared to Haswell-EP/EX. This mimics much of what happened on the desktop and the challenge to move to 14 nm.

Log in

Don't have an account? Sign up now