Board Features

For $128, it is perhaps odd that we’re not seeing USB 3.1 here as it is one of the primary reasons for users to upgrade to a Skylake based system. The audio and networking portion are good for the price, and there are certainly plenty of USB 3.0 ports/headers to make up for the deficit. The lack of fan controls is somewhat of an issue, especially with all the headers, and for this price we would have also liked to have seen a two-digit debug to help with errors.

Supermicro C7H170-M
Warranty Period 3 Years
Product Page Link
Price Amazon US
Size mATX
CPU Interface LGA1151
Chipset Intel H170
Memory Slots (DDR4) Four DDR4,
Supporting 64GB,
Dual Channel,
Up to 2133 MHz
Memory Slots (DDR3L) None
Video Outputs HDMI
DisplayPort
DVI-D
Network Connectivity Intel I219-V
Onboard Audio Realtek ALC1150
PCIe Slots for Graphics (from CPU) 1 x PCIe 3.0 (x16)
PCIe Slots for Other (from PCH) 1 x PCIe 3.0 x4
1 x PCIe 3.0 x1
Onboard SATA Six, RAID 0/1/5/10
Onboard SATA Express None
Onboard M.2 1x PCIe 3.0 x4, RAID 0/1/5/10
Onboard U.2 None
USB 3.1 None
USB 3.0 4 x Rear Panel
4 via headers
USB 2.0 2 x Rear Panel
2 via headers
Power Connectors 1 x 24-pin ATX
1 x 8-pin CPU
1 x 4-pin
Fan Headers 1 x CPU (4-pin)
4 x Fan (4-pin)
IO Panel 1 x Combination PS/2
2 x USB 2.0
4 x USB 3.0
1 x Network RJ-45
HDMI
DisplayPort
DVI-D
Audio Jacks
Other Features Thunderbolt Header
Power/Clear CMOS Buttons
BIOS Restore Button
Front Panel Header
Front Audio Header
COM Header

In The Box

We get the following:

Quick List
Rear IO Shield
Driver DVD
M.2 Screws
Four double-length SATA cables

The C7H170-M certainly comes in an interesting box shape, but in the box there isn’t much to talk about – but this is to be expected for a $128 motherboard. The double length SATA cables are interesting though, as it’s a first on a motherboard that I’ve ever tested. Perhaps Supermicro’s customer research teams gave SATA cable length as one of their primary concerns? Not sure there.

Visual Inspection

Supermicro’s gaming line is designated ‘SuperO’, and much like almost all of the gaming motherboard lines on the market comes in a red and black livery. Whether you like the red plus black combination, it seems that Supermicro is coming up against a few aesthetic issues that the other motherboard manufacturers have come up against: placing the white box around every part for the automated placement machines detracts from the overall look. This will probably be looked at but take time to adjust, as it did with the other manufacturers.

By virtue of this being a H series chipset, there is not much of the over engineering we see on the Z series chipset based motherboards. The power delivery has a small heatsink over one part of it rather than the whole set, and this doesn’t extend over other areas or to the chipset heatsink because it doesn’t really need to. The socket area around the CPU bracket is very busy, with plenty of standard filter caps and resistors, which also takes away from the look. I would also point out that the DRAM spacing between the slots is irregular, which also looks odd and given this I would assume that Supermicro is not implementing a T-topology memory design.

For users keeping track of fan header placement, the socket has immediate access to all five – three 4-pin headers along the top (the CPU one is the one in the middle), one 4-pin on the left near the 4-pin power, and one to the right above the SATA ports.

On the top right side of the motherboard, we have three buttons. In most motherboard designs, these would be power, reset and reset BIOS – but here they are power, reset BIOS and BIOS restore. The last one is to restore the BIOS in the event of a corruption – because Supermicro does not have an easy way to update the BIOS yet, any attempt to flash the BIOS is more risky than the other manufacturers right now, so this button may be vital in some circumstances.

At this point I want to talk about the excessive amount of jumpers on this motherboard.

In total I count ten, most of which are not labelled in the materials which leads me to believe that they’re just for internal testing when designing the motherboard. These are typically removed in the final design, but for whatever reason they are kept here.

Most of them are on the bottom of the motherboard, and this is where we find the second USB 3.0 header (the first being above the SATA slots), a TPM header, the front panel header, a COM header, a USB header and a Thunderbolt card header.

There is no special shielding here in play for the Realtek ALC1150 audio codec on the left hand side, but it seems to perform well in our tests. The PCIe layout gives a single PCIe 3.0 x16 from the CPU – the H series chipset means that Supermicro has to play by the rules and only offer a single PCIe slot from the CPU when the H-series is in use. The other two PCIe slots are an x4 and x1 from the chipset – I would have preferred if these were open ended, as this would allow other x8 or x16 cards to be used, albeit with limited bandwidth. Above the PCIe slots is our M.2 slot, supporting PCIe 3.0 x4 M.2 drives.

The rear IO panel has a combination PS/2 port, two USB 2.0 ports, three video outputs (DVI-D, HDMI, DisplayPort), four USB 3.0 ports, a network port and the audio jacks.

Test Setup

Test Setup
Processor Intel Core i7-6700K (ES, Retail Stepping), 91W, $350
4 Cores, 8 Threads, 4.0 GHz (4.2 GHz Turbo)
Intel Core i3-6100TE, 35W, $117
2 Cores, 4 Threads, 2.7 GHz
Motherboards Supermicro C7H170-M
Cooling Cooler Master Nepton 140XL
Power Supply OCZ 1250W Gold ZX Series
Corsair AX1200i Platinum PSU
Memory Corsair DDR4-2133 C15 2x8 GB 1.2V or
G.Skill Ripjaws 4 DDR4-2133 C15 2x8 GB 1.2V
Memory Settings JEDEC @ 2133
Video Cards ASUS GTX 980 Strix 4GB
MSI GTX 770 Lightning 2GB (1150/1202 Boost)
ASUS R7 240 2GB
Hard Drive Crucial MX200 1TB
Optical Drive LG GH22NS50
Case Open Test Bed
Operating System Windows 7 64-bit SP1

Readers of our motherboard review section will have noted the trend in modern motherboards to implement a form of MultiCore Enhancement / Acceleration / Turbo (read our report here) on their motherboards. This does several things, including better benchmark results at stock settings (not entirely needed if overclocking is an end-user goal) at the expense of heat and temperature. It also gives in essence an automatic overclock which may be against what the user wants. Our testing methodology is ‘out-of-the-box’, with the latest public BIOS installed and XMP enabled, and thus subject to the whims of this feature. It is ultimately up to the motherboard manufacturer to take this risk – and manufacturers taking risks in the setup is something they do on every product (think C-state settings, USB priority, DPC Latency / monitoring priority, overriding memory sub-timings at JEDEC). Processor speed change is part of that risk, and ultimately if no overclocking is planned, some motherboards will affect how fast that shiny new processor goes and can be an important factor in the system build.

For reference, the Supermicro C7H170-M, on our testing BIOS 1.0c, MCT was not enabled by default. Also, the FCLK 10x ratio was not present in the BIOS tested at the time of testing.

Many thanks to...

We must thank the following companies for kindly providing hardware for our test bed:

Thank you to AMD for providing us with the R9 290X 4GB GPUs.
Thank you to ASUS for providing us with GTX 980 Strix GPUs and the R7 240 DDR3 GPU.
Thank you to ASRock and ASUS for providing us with some IO testing kit.
Thank you to Cooler Master for providing us with Nepton 140XL CLCs.
Thank you to Corsair for providing us with an AX1200i PSU.
Thank you to Crucial for providing us with MX200 SSDs.
Thank you to G.Skill and Corsair for providing us with memory.
Thank you to MSI for providing us with the GTX 770 Lightning GPUs.
Thank you to OCZ for providing us with PSUs.
Thank you to Rosewill for providing us with PSUs and RK-9100 keyboards.

Supermicro C7H170-M Overview Supermicro C7H170-M BIOS
Comments Locked

62 Comments

View All Comments

  • Taristin - Thursday, March 17, 2016 - link

    Total War: Atilla shows the incorrect graph for performance with a GTX card. It shows the Alien Isolation score (Which is... significantly different!)
  • yannigr2 - Thursday, March 17, 2016 - link

    Did I saw an Athlon 845 somewhere in there? Is a review incoming?
  • Bad Bimr - Thursday, March 17, 2016 - link

    I miss the days of the cheap CPU with BIG TIME OC potential. My first foray in OCing was with the legendary Celeron 300A. That got me hooked. Next was the P3 600 and next came the P4 2.8 (Northwood) followed by the i7-920. Last year I bought a i7-4790k only to sell it when I came upon a thread on X-58 Xeon overclocking. Currently rocking a very conservative Xeon x5675 @ 4.15 Ghz (25x166) on stock voltage on air on all 6 cores with HT on. I have had it stable to 4.4 GHz but feel better with the lower voltage, plenty fast enough. Total cost for the x5675, $76 on eBay! I love cheap CPU overclocking.
  • OrphanageExplosion - Friday, March 18, 2016 - link

    This is a remarkable article. Anandtech has overclocked a *really slow* Core i3 processor so that it's not as fast as the slowest consumer-level i3 and written a *15-page* piece on it?!

    Why didn't you just buy the Core i3 6100?

    The data elsewhere demonstrates why Intel never released a K i3 - it gives quad-like performance for gaming at 4.4GHz, where the i5 is king. The value argument is diluted a bit by the fact you will need a third party cooler though, while the i5 6500 is pretty awesome just with a stock HSF and some fast DDR4.

    I really, really hope that AMD targets this sector aggressively with Zen - it could be a game-changer.
  • ReverendDC - Friday, March 18, 2016 - link

    The perfect explanation why AMD is needed in the CPU space as well. No competition = restrictions to force more purchases from a single vendor.
  • Achaios - Friday, March 18, 2016 - link

    I was thinking, looking at the gaming benchmarks, that I am going to be stuck with the 4770k for maaaaaaannnnyyyy years to come.
  • JoeyJoJo123 - Friday, March 18, 2016 - link

    I honestly think asking why an i3 K-series processor doesn't exist is an awful question.

    I think the real question here that everyone isn't asking is:
    "Why is Intel even selling non-K processors in anything but business grade (Xeon) CPUs?"

    Doing a 15 page investigation where you compare an awful starting point locked i3 sample (one that isn't even relevant to consumers), examining its overclocked results, and the results of a locked i5 sample, then concluding that yes, the lower grade processor indeed does have worse performance than an i5, that might be why they don't have a K-series i3, is both completely obvious yet misses the point entirely.

    Overclocking is a choice for the consumer. Whether or not the i3 part fully closes the gap with an i5 part is irrelevant, and if it doesn't close the gap, that's not a valid reason to then conclude that's why they don't sell K-series i3's. Overclocking gets me more performance than stock, and regardless of how big or small the overclock is, it should be up to the user to choose whether to overclock, not up to the manufacturer to dictate whether you can attempt to overclock at all (with non-K chips.)

    I still can't understand why people are trying to find logic in strategic marketing placement of Intel chips (ie: rationalizing it for Intel, exactly what their marketing department wants) when you should be asking "Why are you selling me a locked down chip? I should be free to run this at whatever level of performance I can muster, as after I purchase this product, it is wholly mine to use as I please"
  • RobATiOyP - Sunday, March 20, 2016 - link

    From the OEM & Intel's point of view, having ppl add volts & frequency to their complicated processors, may well lead to unstable chips or non-functioning, which may be (attempted) to be returned under warranty. If you buy a 3GHz locked CPU they're not fleecing you by not letting it be run faster, like options you pay more for.

    What is more annoying to me, is how there are various instruction options, like encryption & virtualisation which they turn on/off for market segmentation.
  • zodiacfml - Friday, March 18, 2016 - link

    Awesome. More care and effort was given here than I expected.
    Simply, Intel refuses to. Limiting higher frequencies to i5 and i7. The market Intel is limiting is gaming market. They might open it if AMD, miraculously, becomes competitive again.
  • TheHolyLancer - Friday, March 18, 2016 - link

    honestly i think the author missed the fact that intel( and amd to a point ) prices their stuff no-linearly

    to jump from a pentium to i3 may only be 50 but to jump from i5 to i7k or the extreme (well soon? for the 2011 revamp?) costs a lot more

    i remember the i7 920 too and with an oc i had i7 965 extreme levels of performance for way way cheaper

Log in

Don't have an account? Sign up now