Bandwidth is an important factor for quite a few HPC and virtualization workloads. So although Stream is a synthetic benchmark, we feel it is interesting to include Stream. If gives a rough idea which system will shine in multi-thread bandwidth limited applications.

 

Stream TRIAD on 64 bit linux - maximum threads

Four CPUs with each four DDR-3 channels at 1333 MHz, combined with an excellent (2 x 6.4 GT/s + 2 x 3.2 GT/s)  HT-3 CPU interconnect links gives the highest Stream score we have encountered so far.  The maximum theoretical bandwidth is limited by the 1.8 GHz speed of each 64 bit memory controller: 8 bytes x 1.8 GHz, or 28.8 GB/s. Four memory controller should thus achieve about  115 GB/s/.  So we get about 71% of the theoretical bandwidth with a  decently but not extremely optimized binary.  AMD tested with such a “benchmark” binary and achieved 110 GB/s.
 
The result is that AMD’s 12-core scores extremely well in typically bandwidth hungry HPC applications such as Ansys Fluent and LS-Dyna. Although the HPC server market is relatively small (about 5% ), it is an important one for AMD. AMD has been dominating this market since the introduction of the Opteron back in 2003.  The low clockspeeds and delayed introduction of the AMD “Barcelona” in 2007 caused a lot of trouble in most server markets, but Barcelona was in a lot of HPC applications still the fastest compared to Intel’s Xeon 5400. AMD’s did not lose significant marketshare in this niche market until the introduction of the Xeon 5500 “Nehalem”. The Magny-cours Opteron has put an end to that period.

The Storage Setup ERP: SAP S&D
Comments Locked

51 Comments

View All Comments

  • jdavenport608 - Thursday, September 9, 2010 - link

    Appears that the pros and cons on the last page are not correct for the SGI server.
  • Photubias - Thursday, September 9, 2010 - link

    If you view the article in 'Print Format' than it shows correctly.
    Seems to be an Anandtech issue ... :p
  • Ryan Smith - Thursday, September 9, 2010 - link

    Fixed. Thanks for the notice.
  • yyrkoon - Friday, September 10, 2010 - link

    Hey guys, you've got to do better than this. The only thing that drew me to this article was the Name "SGI" and your explanation of their system is nothing.

    Why not just come out and say . . " Hey, look what I've got pictures of". Thats about all the use I have for the "article". Sorry if you do not like that Johan, but the truth hurts.
  • JohanAnandtech - Friday, September 10, 2010 - link

    It is clear that we do not focus on the typical SGI market. But you have noticed that from the other competitors and you know that HPC is not our main expertise, virtualization is. It is not really clear what your complaint is, so I assume that it is the lack of HPC benchmarks. Care to make your complaint a little more constructive?
  • davegraham - Monday, September 13, 2010 - link

    i'll defend Johan here...SGI has basically cornered themselves into the cloud scale market place where their BTO-style of engagement has really allowed them to prosper. If you wanted a competitive story there, the Dell DCS series of servers (C6100, for example) would be a better comparison.

    cheers,

    Dave
  • tech6 - Thursday, September 9, 2010 - link

    While the 815 is great value where the host is CPU bound, most VM workloads seem to be memory limited rather than processing power. Another consideration is server (in particularly memory) longevity which is something where the 810 inherits the 910s RAS features while the 815 misses out.

    I am not disagreeing with your conclusion that the 815 is great value but only if your workload is CPU bound and if you are willing to take the risk of not having RAS features in a data center application.
  • JFAMD - Thursday, September 9, 2010 - link

    True that there is a RAS difference, but you do have to weigh the budget differences and power differences to determine whether the RAS levels of either the R815 (or even a xeon 5600 system) are not sufficient for your application. Keep in mind that the xeon 7400 series did not have these RAS features, so if you were comfortable with the RAS levels of the 7400 series for these apps, then you have to question whether the new RAS features are a "must have". I am not saying that people shouldn't want more RAS (everyone should), but it is more a question of whether it is worth paying the extra price up front and the extra price every hour at the wall socket.

    For virtualization, the last time I talked to the VM vendors about attach rate, they said that their attach rate to platform matched the market (i.e. ~75% of their software was landing on 2P systems). So in the case of virtualization you can move to the R815 and still enjoy the economics of the 2P world but get the scalability of the 4P products.
  • tech6 - Thursday, September 9, 2010 - link

    I don't disagree but the RAS issue also dictates the longevity of the platform. I have been in the hosting business for a while and we see memory errors bring down 2 year+ old HP blades in alarming numbers. If you budget for a 4 year life cycle, then RAS has to be high on your list of features to make that happen.
  • mino - Thursday, September 9, 2010 - link

    Generally I would agree except that 2yr old HP blades (G5) are the worst way to ascertain commodity x86 platform reliability.
    Reasons:
    1) inadequate cooling setup (you better keep c7000 input air well below 20C at all costs)
    2) FBDIMM love to overheat
    3) G5 blade mobos are BIG MESS when it comes to memory compatibility => they clearly underestimated the tolerances needed

    4) All the points above hold true at least compared to HS21* and except 1) also against bl465*

    Speaking about 3yrs of operations of all three boxen in similar conditions. The most clear thi became to us when building power got cutoff and all our BladeSystems got dead within minutes (before running out of UPS by any means) while our 5yrs old BladeCenter (hosting all infrastructure services) remained online even at 35C (where the temp platoed thanks to dead HP's)
    Ironically, thanks to the dead production we did not have to kill infrastructure at all as the UPS's lasted for the 3 hours needed easily ...

Log in

Don't have an account? Sign up now