Energy and Pricing

Unfortunately, accurately and fairly comparing energy consumption at the system level between the S822L and other systems wasn't something we were able to do, as there were quite a few differences in the hardware configuration. For example, the IBM S822L had two SAS controllers and we had no idea how power hungry that chip under the copper heatsink was. Still there is no doubt that the dual CPU system is by far the most important power consumer when the server system is under load. In case of the IBM system, the Centaur chips will take their fair share too, but those chips are not optional. So we can only get a very rough idea how the power consumption compares.

Xeon E5 299 v3/POWER8 Comparison (System)
Feature 2x Xeon E5-2699v3 2x IBM POWER8 3.4 10c
IBM S822L
Idle 110-120W 360-380W

Running NAMD (FP)


540-560W

700-740W
Running 7-zip (Integer)

300-350W


780-800W

The Haswell core was engineered for mobile use, and there is no denying that Intel's engineers are masters at saving power at low load.


The mightly POWER8 is cooled by a huge heatsink

IBM's POWER8 has pretty advanced power management, as besides p-states, power gating cores and the associated L3-cache should be possible. However, it seems that these features were not enabled out-of-the box for some reason as idle power was quite high. To be fair, we spent much more time on getting our software ported and tuned than on finding the optimal power settings. In the limited time we had with the machine, producing some decent benchmarking numbers was our top priority.

Also, the Centaur chips consume about 16W per chip (Typical, 20W TDP) and as we had 8 of them inside our S822L, those chips could easily be responsible for consuming around 100W.

Interestingly, the IBM POWER8 consumes more energy processing integers than floating point numbers. Which is the exact opposite of the Xeon, which consumes vastly more when crunching AVX/FP code.

Pricing

Though the cost of buying a system might be only "a drop in the bucket" in the total TCO picture in traditional IT departements running expensive ERP applications, it is an important factor for almost everybody else who buys Xeon systems. It is important to note that the list prices of IBM on their website are too high. It is a bad habit of a typical tier-one OEM.

Thankfully we managed to get some "real street prices", which are between 30% (one server) and 50% (many) lower. To that end we compared the price of the S822L with a discounted DELL R730 system. The list below is not complete, as we only show the cost of the most important components. The idea is to focus on the total system price and show which components contribute the most to the total system cost.

Xeon E7v3/POWER8 Price Comparison
Feature Dell R730 IBM S822L
  Type Price Type Price
Chassis R730 N/A S822L N/A
Processor 2x E5-2697 $5000 2x POWER8 3.42 $3000
RAM 8x 16GB
DDR4 DIMM
$2150 8x 16 GB CDIMM (DDR3) $8000
PSU 2x 1100W $500 2x 1400W $1000
Disks SATA or SSD Starting at
$200
SAS HD/SSD +/- $450
Total system price (approx.)   $10k   $15k

With more or less comparable specs, the S822L was about 50% more expensive. However, it was almost impossible to make an apples-to-apples comparison. The biggest "price issue" are the CDIMMs, which are almost 4 times as expensive as "normal" RDIMMs. CDIMMs offer more as they include an L4-cache and some extra features (such as a redundant memory chip for each 9 chips). For most typical current Xeon E5 customers, the cost issue will be important. For a few, the extra redundancy and higher bandwidth will be interesting. Less important, but still significant is the fact that IBM uses SAS disks, which increase the cost of the storage system, especially if you want lots of them.

This cost issue will be much less important on most third party POWER8 systems. Tyan's "Habanero" system for example integrates the Centaur chips on the motherboard, making the motherboard more expensive but you can use standard registered DDR3L RDIMMs, which are much cheaper. Meanwhile the POWER8 processor tends to be very reasonably priced, at around $1500. That is what Dell would charge for an Intel Xeon E5-2670 (12 cores at 2.3-2.6 GHz, 120W). So while Intel's Xeon are much more power efficient than the POWER8 chips, the latter tends to be quite a bit cheaper.

Scale-Out Big Data Benchmark: ElasticSearch Comparing Benchmarks & Closing Thoughts
Comments Locked

146 Comments

View All Comments

  • JohanAnandtech - Wednesday, November 11, 2015 - link

    I did not know you used 7500x3500, my testing was inspired on what the rest of the benchmarking community (Phoronix, Serverthehome) was using (obviously, 1024x768 is too small for current servers).

    http://www.anandtech.com/show/9567/the-power-8-rev...
    This answers your question about threads, right?
  • JohanAnandtech - Wednesday, November 11, 2015 - link

    Oh yes, changed the link. Thanks for the feedback!
  • mapesdhs - Thursday, November 12, 2015 - link

    Most welcome! And I really should move the more complex tests to the top of the page...

    Oh, my wording about threads was not what I'd intended. What I meant was, the no. of threads being larger than the supported no. of hardware threads. Thus, for a 12-core Power8 with 8 threads per core, try using 192 or 384 threads, instead of just the nominal 96 one might assume would make sense.

    Ian.
  • MB13 - Wednesday, November 11, 2015 - link

    POWER8 is full of innovation and brings change! An S812LC only costs $6,595 from IBM's external website! http://www-03.ibm.com/systems/power/hardware/s812l...

    The Power scale out boxes will save on your running and software costs as you can reduce your software licensing and server footprint.

    With the OpenPOWER Foundation, you now have companies such as Tyan and Wistron who also create their own POWER8 servers and sell them independently of IBM. If you have not looked at The OpenPOWER Foundation and the innovation it brings through community and collaboration, your missing out big time!

    There is change! Don't get left behind!
  • MB13 - Wednesday, November 11, 2015 - link

    and don't forget - POWER8 runs Little Endian and support the latest versions of RedHat, SUSE and Ubuntu!
    The OpenPOWER servers are Linux only!
  • Gasaraki88 - Wednesday, November 11, 2015 - link

    It's funny how this article is trying to "sell" me the system but I'm still not impressed. Costs more, less performance, and uses more power at idle and load than the Intel system.
  • nils_ - Thursday, November 12, 2015 - link

    What I found the most off putting is that you have to do a lot of work to get some things running with Linux. That's a big cost factor.
  • nils_ - Thursday, November 12, 2015 - link

    Having a lot of software that isn't really well ported is probably going to remain a problem for Power8 for years to come since so few people have access to these kinds of systems and the cost is prohibitive. The great thing with x86 and ARM is that you can use it at home/work pretty easily without shelling out a lot of money. On x86 you can be sure if your software builds locally and runs locally it will also run on your server.
  • svj - Thursday, November 12, 2015 - link

    Well written articles.

    1. I submit that the headline is misleading. Intel x86 does not compete with POWER at the high end. POWER L & LC line of servers are comparable to x86 based servers. IBM POWER is taking the battle to Intel's home turf.
    2. The analysis leaves out cost of SW. Many organizations use commercial software which are priced per core. If POWER can do with 10 cores what Intel does with 18 cores, that means HUGE savings.
    3. OPEN POWER is a huge move. I think the market will start seeing the results soon.
  • alpha754293 - Thursday, November 12, 2015 - link

    An excellent review as always Johan. (haha...to zeeBomb. It is my understanding that Johan doesn't post probably as often as he might have otherwise like to because testing servers/enterprise computing solutions takes a LOT longer than testing/benching consumer-level systems. Some of the HPC applications that I run takes hours to days for each run, so when you're running it, you're running those tests over and over again, and before you know it, a month has gone by (or you've ran out of time with the system) or you have to purposely cut it short so that you can test a variety of software.)

    It's unfortunate that IBM never ported AIX to x86 (unlike Solaris.) I think that there would be more people trying to get into it if the cost of entry (even just to learn) isn't so high. I've looked at getting an old POWER4 system before for that purpose, but by then, the systems are so old and slow that it's like "what's the point?" I think that IBM is literally pricing themselves into extinction (along with their entire hardware/software ecosystem). Unfortunately for many businesses, AIX POWER servers still run their mainframe/backend which means that if you want to get paid $100k+ outta college - go learn AIX on POWER. As the current generation of sysadmins are starting to age and retire out, and they're going to have a hard time finding qualified people, the only way eventually would be that they would have to pay top dollar just to attract people into the field. (Unless they decide to move everything over to the x86/Xeon/Linux world. But for some mainframes (like financial institutions), that's DEFINITELY easier said than don).

Log in

Don't have an account? Sign up now