Chrome - AnandTech Frontpage

Chrome is the de-facto browser application on a lot of Android devices. We again use it to load the AnandTech frontpage and to analyse the CPU's behaviour. 
 
Starting off with the little cores:

Off the bat we see quite a large difference in the power state distribution graphs. Chrome seems to place much higher load on the little cores compared to S-Browser. When looking at the run-queue chart we see that indeed all cores are almost at their full capacity for a large amount of time. 

What stands out though is a very large peak around the 4s mark. Here we see the little cores peak up to almost 7 threads, which is quite unexpected. This burst seems to overload the little cluster's capacity. The frequency also peaks to 1.3GHz at this point. The reason we don't see it go higher is probably that the threads are still big enough that they're picked up by the scheduler and migrated over to the big cluster at that point.

The big cores also see a fair amount of load. Similarly to the S-Browser we have 1 very large thread that puts a consistent load on 1 CPU. But curiously enough we also see some significant activity on up to 2 other big cores. Again, in terms of burst loads we see up to 3 big CPUs being used concurrently.

The total run-queue depths for the system looks very different for Chrome. We see a consistent use of 4-5 cores and a large burst of up to 8 threads. This is a very surprisng finding and impact on the way we perceive the core count usage of Chrome.

Browser: S-Browser - AnandTech Frontpage Browser: Chrome - BBC Frontpage
POST A COMMENT

156 Comments

View All Comments

  • darkich - Friday, September 4, 2015 - link

    Andrei, your articles are in a league of their own. Thanks for the great work Reply
  • melgross - Thursday, September 10, 2015 - link

    I'm still not convinced. The fact that it's doing what it does on these chips doesn't mean that their performance is as good as it could be, or that power efficiency is as good. We really need to see two to four core designs, with cores that are really more powerful, to make a proper comparison. We don't have that with the chips tested. Reply
  • blackcrayon - Thursday, October 8, 2015 - link

    Exactly. It should at least show a design with a small number of powerful cores. Obviously with Apple's A series chips you have the issue of dealing with a different operating system underneath, but can't they use a Tegra K1 or something? Reply
  • Hydrargyrum - Friday, September 25, 2015 - link

    The stacked frequency distribution graphs would be a *lot* easier to read if you used a consistent range of different saturations/intensities of a single colour (e.g. go from bright=fast to dark=slow), or a single pass from red to blue through the ROYGBIV colour spectrum (e.g. red=fast, blue=slow), to represent the range of frequencies.

    By going around the colour wheel multiple times in the colour coding it's *really* hard to tell whether a given area of the graph is high or low frequency. The difference in colour between 1400/800, 1296/700, and 1200/600 are very subtle to say the least.
    Reply
  • Ethos Evoss - Thursday, November 12, 2015 - link

    anandtech always uses weird non-popular words on its own site type ''heterogeneous '' never heard in my life and even usa or uk ppl have to search in cambridge/oxford dictionary :DDD
    Immediately u can say it is DEFO NOT USA or UK website.. They do not use such difficult words AT ALL :)
    Reply
  • Ethos Evoss - Thursday, November 12, 2015 - link

    ANd mainly they use when it comes to china products .. like mediatek or kirin or big.little topic etc..
    This site is DEVOURED or we could say powered by apple.inc :)
    Reply

Log in

Don't have an account? Sign up now