Performance Metrics - II

In this section, we mainly look at benchmark modes in programs used on a day-to-day basis, i.e, application performance and not synthetic workloads.

x264 Benchmark

First off, we have some video encoding benchmarks courtesy of x264 HD Benchmark v5.0. This is simply a test of CPU performance. As expected, the Core i7-5557U performs much better than any other U-series CPU that we have tested so far. Thanks to its high TDP, it can sustain higher clock rates. Obviously, it is no match for the 65W TDP Core i7-4770R in the BRIX Pro.

Video Encoding - x264 5.0 - Pass 1

Video Encoding - x264 5.0 - Pass 2


7-Zip is a very effective and efficient compression program, often beating out OpenCL accelerated commercial programs in benchmarks even while using just the CPU power. 7-Zip has a benchmarking program that provides tons of details regarding the underlying CPU's efficiency. In this subsection, we are interested in the compression and decompression MIPS ratings when utilizing all the available threads.

7-Zip LZMA Compression Benchmark

7-Zip LZMA Decompression Benchmark


As businesses (and even home consumers) become more security conscious, the importance of encryption can't be overstated. CPUs supporting the AES-NI instruction for accelerating the encryption and decryption processes have, till now, been the higher end SKUs. However, with Bay Trail, even the lowly Atom series has gained support for AES-NI. The Core i7-5557U in the NUC5i7RYH does have AES-NI support. TrueCrypt, a popular open-source disk encryption program can take advantage of the AES-NI capabilities. The TrueCrypt internal benchmark provides some interesting cryptography-related numbers to ponder. In the graph below, we can get an idea of how fast a TrueCrypt volume would behave in the Intel NUC5i7RYH and how it would compare with other select PCs. This is a purely CPU feature / clock speed based test.

TrueCrypt Benchmark

Agisoft Photoscan

Agisoft PhotoScan is a commercial program that converts 2D images into 3D point maps, meshes and textures. The program designers sent us a command line version in order to evaluate the efficiency of various systems that go under our review scanner. The command line version has two benchmark modes, one using the CPU and the other using both the CPU and GPU (via OpenCL). The benchmark takes around 50 photographs and does four stages of computation:

  • Stage 1: Align Photographs
  • Stage 2: Build Point Cloud (capable of OpenCL acceleration)
  • Stage 3: Build Mesh
  • Stage 4: Build Textures

We record the time taken for each stage. Since various elements of the software are single threaded, others multithreaded, and some use GPUs, it is interesting to record the effects of CPU generations, speeds, number of cores, DRAM parameters and the GPU using this software.

Agisoft PhotoScan Benchmark - Stage 1

Agisoft PhotoScan Benchmark - Stage 2

Agisoft PhotoScan Benchmark - Stage 3

Agisoft PhotoScan Benchmark - Stage 4

Dolphin Emulator

Wrapping up our application benchmark numbers is the Dolphin Emulator benchmark mode results. This is again a test of the CPU capabilities, and the trend observed in the previous benchmarks in this section get repeated here. The Core i7-5557U is simply the highest-performing U-series CPU that we have evaluated so far.

Dolphin Emulator Benchmark

Performance Metrics - I Gaming Benchmarks
Comments Locked


View All Comments

  • ShieTar - Monday, April 20, 2015 - link

    Depends on what you mean with "the M.2 spec". I have a XP941 on a MSI Z97 Board, its measurably faster than the 840Pro I came from.

    I figure in this case the problem should be with the NUC board rather than the interface spec. The Plextor itself is not fast enough to profit from the interface, but it should be fast enough to work without noticable stuttering.
  • nutternatter34 - Tuesday, April 21, 2015 - link

    In my case we're talking about an X99 board, and an Intel 530 series M.2 drive (180gb). I compared that to each SSD I own. An Intel 320 series, a Samsung 830 series and the Crucial MX100 series. (120gb/256gb/512gb). M.2 was a disaster, what's worse there's barely anything to configure, it should just work.
  • meacupla - Monday, April 20, 2015 - link

    Oh, so this is limited to 45W?

    I wonder what the 3rd party makers could do with this chip if they expanded the power envelope and cooling capabilities.
  • Qwertilot - Monday, April 20, 2015 - link

    28w for the CPU/GPU, 17 for the rest even ;)

    I guess we'll find out what is possible when Broadwell K finally makes its much delayed appearance....
  • charea - Monday, April 20, 2015 - link

    So why use a 65W brick for a system limited at 45W? It doesn't make sense.
  • close - Monday, April 20, 2015 - link

    If you're going to power some more devices from the system then it helps to have a power source that's slightly oversized.
  • charea - Monday, April 20, 2015 - link

    Are you saying that the monitor is excluded from this limit? Was the test done without a screen included?
  • dave_the_nerd - Monday, April 20, 2015 - link

    USB devices pull up to 5w each. The test doesn't include a monitor. 30-40w draw for a 24" monitor is typical.
  • ganeshts - Monday, April 20, 2015 - link

    Right - 4x USB 3.0 ports need 20W. Add that to the 45W, and you are already at the 65W limit.

    Our stress test only loads up the CPU and GPU - it doesn't even do the internal storage stressing or WLAN stressing - these are bound to increase the power consumption a bit. That said, stressing those might actually result in the CPU not getting loaded as much as it does in our Prime 95 test.
  • ShieTar - Monday, April 20, 2015 - link

    And thats nicely keeping to the spec, there are ports and charger cables out there working with 2A => 10W.

Log in

Don't have an account? Sign up now