Synthetics

As always we’ll also take a quick look at synthetic performance. In the case of GTX Titan X and its GM200 GPU, what we should see here is a pretty straightforward 30-40% increase in performance, owing to GM200’s evenly scaled out Maxwell 2 design.

Synthetic: TessMark, Image Set 4, 64x Tessellation

At over 300fps even with TessMark’s most strenuous test case, the GTX Titan X is unsurprisingly the top card at tessellation performance. Designed to deliver up 24 triangles/clock, theoretical geometry throughput stands at a staggering 24B triangles/second.

Synthetic: 3DMark Vantage Texel Fill

Synthetic: 3DMark Vantage Pixel Fill

Meanwhile 3DMark’s fillrate tests reiterate Maxwell’s biggest and smallest improvements over Kepler. With a decrease in ALU:TEX ratios, overall texture throughput on the GTX Titan X is very similar to the GTX 780 Ti. On the other hand thanks to improved memory compression GTX Titan X has a pixel fillrate unlike anything else. This in turn is a big part of the reason NVIDIA is pushing that GTX Titan X be paired up with 4K monitors, as it offers the kind of fillrate necessary to drive such a high resolution.

GRID Autosport Compute
Comments Locked

276 Comments

View All Comments

  • Kevin G - Tuesday, March 17, 2015 - link

    Last I checked, rectal limits are a bit north of 700 mm^2. However, nVidia is already in the crazy realm in terms of economics when it comes to supply/demand/yields/cost. Getting fully functional chips with die sizes over 600 mm^2 isn't easy. Then again, it isn't easy putting down $999 USD for a graphics card.

    However, harvested parts should be quiet plentiful and the retail price of such a card should be appropriately lower.
  • Michael Bay - Wednesday, March 18, 2015 - link

    >rectal limits are a bit north of 700 mm^2

    Oh wow.
  • Kevin G - Wednesday, March 18, 2015 - link

    @Michael Bay

    Intel's limit is supposed to be between 750 and 800 mm^2. They have released a 699 mm^2 product commercially (Tukwilla Itanium 2) a few years ago so it can be done.
  • Michael Bay - Wednesday, March 18, 2015 - link

    >rectal limits
  • D. Lister - Wednesday, March 18, 2015 - link

    lol
  • chizow - Tuesday, March 17, 2015 - link

    Yes its clear Nvidia had to make sacrifices somewhere to maintain advancements on 28nm and it looks like FP64/DP got the cut. I'm fine with it though, at least on GeForce products I don't want to pay a penny more for non-gaming products, if someone wants dedicated compute, go Tesla/Quadro.
  • Yojimbo - Tuesday, March 17, 2015 - link

    Kepler also has dedicated FP64 cores and from what I see in Anandtech articles, those cores are not used for FP32 calculations. How does NVIDIA save power with Maxwell by leaving FP64 cores off the die? The Maxwell GPUs seem to still be FP64 capable with respect to the number of FP64 cores placed on the die. It seems what they save by having less FP64 cores is die space and, as a result, the ability to have more FP32 cores. In other words, I haven't seen any information about Maxwell that leads me to believe they couldn't have added more FP64 cores when designing GM200 to make a GPU with superior double precision performance and inferior single precision performance compared with the configuration they actually chose for GM200. Maybe they just judged single precision performance to be more important to focus on than double precision, with a performance boost for double precision users having to wait until Pascal is released. Perhaps it was a choice between making a modest performance boost for both single and double precision calculations or making a significant performance boost for single precision calculations by forgoing double precision. Maybe they thought the efficiency gain of Maxwell could not carry sales on its own.
  • testbug00 - Tuesday, March 17, 2015 - link

    If this is a 250W card using about the same power as the 290x under gaming load, what does that make the 290x?
  • Creig - Tuesday, March 17, 2015 - link

    A very good value for the money.
  • shing3232 - Tuesday, March 17, 2015 - link

    Agree.

Log in

Don't have an account? Sign up now