CPU Real World Performance

A small note on real world testing against synthetic testing – due to the way that DRAM affects a system, there can be a large disconnect between what we can observe in synthetic tests against real world testing. Synthetic tests are designed to exploit various feature XYZ, usually in an unrealistic scenario, such as pure memory read speeds or bandwidth numbers. While these are good for exploring the peak potential of a system, they often to not translate as well as CPU speed does if we invoke some common prosumer real world task. So while spending 10x on memory might show a large improvement in peak bandwidth numbers, users will have to weigh up the real world benefits in order to find the day-to-day difference when going for expensive hardware. Typically a limiting factor might be something else in the system, such as the size of a cache, so with all the will in the world a faster read speed won’t make much difference. As a result, we tend to stick to real world tests for almost all of our testing (with a couple of minor suggestions). Our benchmarks are either derived from areas such as transcoding a film or come from a regular software format such as molecular dynamics running a consistent scene.

Handbrake v0.9.9

For HandBrake, we take two videos (a 2h20 640x266 DVD rip and a 10min double UHD 3840x4320 animation short) and convert them to x264 format in an MP4 container.  Results are given in terms of the frames per second processed, and HandBrake uses as many threads as possible.

HandBrake v0.9.9 LQ Film

HandBrake v0.9.9 HQ Film

The low quality conversion is more reliant on CPU cycles available, while the high resolution conversion seems to have a very slight ~3% benefit moving up to DDR4-3000 memory.

WinRAR 5.01

Our WinRAR test from 2013 is updated to the latest version of WinRAR at the start of 2014. We compress a set of 2867 files across 320 folders totaling 1.52 GB in size – 95% of these files are small typical website files, and the rest (90% of the size) are small 30 second 720p videos.

WinRAR 5.01

The biggest difference showed a 5% gain over DDR4-2133 C15, although this seemed at random.

FastStone Image Viewer 4.9

FastStone Image Viewer is a free piece of software I have been using for quite a few years now. It allows quick viewing of flat images, as well as resizing, changing color depth, adding simple text or simple filters. It also has a bulk image conversion tool, which we use here. The software currently operates only in single-thread mode, which should change in later versions of the software. For this test, we convert a series of 170 files, of various resolutions, dimensions and types (of a total size of 163MB), all to the .gif format of 640x480 dimensions. Results shown are in seconds, lower is better.

FastStone Image Viewer 4.9

No difference between the memory speeds in FastStone.

x264 HD 3.0 Benchmark

The x264 HD Benchmark uses a common HD encoding tool to process an HD MPEG2 source at 1280x720 at 3963 Kbps. This test represents a standardized result which can be compared across other reviews, and is dependent on both CPU power and memory speed. The benchmark performs a 2-pass encode, and the results shown are the average frame rate of each pass performed four times. Higher is better this time around.

x264 HD 3.0, 1st Pass

x264 HD 3.0, 2nd Pass

The faster memory showed a 2.5% gain on the first pass, but less than a 1% gain in the second pass.

7-Zip 9.2

As an open source compression tool, 7-Zip is a popular tool for making sets of files easier to handle and transfer. The software offers up its own benchmark, to which we report the result.

7-Zip 9.2

At most a 2% gain was shown by 3000+ memory.

Mozilla Kraken 1.1

One of the more popular web benchmarks that stresses various codes, we run this benchmark in Chrome 35.

Mozilla Kraken 1.1

Kraken seemed to prefer the fast 1.2V memory, giving a 4.8% gain at DDR4-2800 C16, although this did not translate into the faster memory.

WebXPRT

A more in-depth web test featuring stock price rendering, image manipulation and face recognition algorithms, also run in Chrome 35.

WebXPRT

The DDR4-3200 gave an 11% gain over the base JEDEC memory, although this seemed to be more of a step than a slow rise.

Enabling XMP Memory Scaling on Haswell: Professional Performance
POST A COMMENT

120 Comments

View All Comments

  • ddriver - Thursday, February 5, 2015 - link

    Upgrading became a non-issue around sandy bridge. My system is 3+ years old, and still within 10% of the corresponding tier of CPU today. Might as well be my last x86/Windows system before I switch to an ARM cluster under Linux... Reply
  • mdav9609 - Sunday, February 14, 2016 - link

    Awesome! I've got an intel server board running two quad core Xeon E5620's (or something don't remember the exact numbers right now, socket 775) and their performance is almost as good as an i7 2600k, at least according to Passmark. I'm running them with an EVGA GTX 580. Got no problem running Fallout 4 and The Witcher 3 on it in 1080p. It's not my primary machine but I got one of these systems from work for free and put the second Xeon in it. Got it off eBay for like 15 bucks. Put in a few 15K SAS drives in RAID 0 and it is pretty cool. I like maxing out older systems just for the hell of it. Reply
  • pandemonium - Friday, February 6, 2015 - link

    I thought it was pretty clear in this, and many, many, previous test comparisons of speed and DDR versions, that it makes very little difference. I'm on 8GB DDR2 and it's still going strong for everything I use it for. If it works... Reply
  • FlushedBubblyJock - Sunday, February 15, 2015 - link

    Bingo - poor guy had to go through all that just so kingpins can win prizes flying around the world on enduser dimes.
    To the sane electorate, memory means number of GB.

    I have to add I know plenty who, so long as the number is higher, they really and truly believe there is a performance increase. Sometimes they get confused, mixing generations of cpu's and memory, then their big brag on their junk doesn't work so well, but they still believe it.
    So the memory marketing works, because there are an awful lot of people out there who fit the above description.
    Reply
  • phoenix_rizzen - Thursday, February 5, 2015 - link

    You're not alone.

    I have an HTPC running in the bedroom at home with an Athlon64 and 1.5 GB of DDR1. Plenty of horsepower for Windows XP, Google Chrome, and Plex web client, as it's connected to a 27" CRT TV.

    One of my desktops at work is a tri-core Athlon-II system with 4 GB of DDR2 (AM2 motherboard)

    My other work desktop is slightly more advanced, running a tri-core Athlon-II system with 8 GB of DDR3 (AM3 motherboard).

    And the home server is just slightly more advanced still, running a quad-core Phenom-II system with 8 GB of DDR3.
    Reply
  • nwrigley - Thursday, February 5, 2015 - link

    I'm still running a quad Q6600 @ 3ghz with 8GB of DDR2. I've upgraded to an SSD and newer graphics card over its life. While money is certainly a limiting factor, in some ways there hasn't been a compelling reason to upgrade to a new machine.

    I work in video production and use high-end Macs at work. I often don't feel a difference between work and at home, with the exception of when the Mac doesn't have an SSD installed - then my system feels much faster (my boss isn't the type to upgrade an existing system, he'll just order a new one - very frustrating when a $200 SSD upgrade would make a huge difference).

    I'm surprised just how well this processor has stood the test of time, but we haven't seen the type of performance jump that happened after the Pentium 4 era. The big performance jump we did see was with SSDs, so that's where I put my money (along with a bigger/better monitor.) My computer has also been a quiet and reliable workhorse - you never know what problems may come with a new system.
    Reply
  • Murloc - Thursday, February 5, 2015 - link

    I wouldn't feel compelled to change such a system either except for the sata/USB speeds, IF your use case can obtain advantages from faster speeds in that sector of course. Reply
  • nwrigley - Thursday, February 5, 2015 - link

    Yep, you're absolutely right. A current motherboard would make both my SSD and GPU run faster with increased SATA and PCI Express speeds. USB 3.0 would be nice, but I don't have a current need for it. Reply
  • Guspaz - Thursday, February 5, 2015 - link

    PCIe speeds in a Core 2 era system would still outstrip SATA on a modern system, though. Slap in an SSD using an x4 interface, for example, and you're talking 1GB/s of full duplex bandwidth even with PCIe 1.0, while modern SATA is still only doing around 600MB/s.

    Do you have any free PCIe slots that are more than 1x? Those could directly power a PCIe SSD, or you could stick in a SATA3 controller and use a SATA3 SSD. Ditto for USB3, if you did need it.
    Reply
  • nwrigley - Thursday, February 5, 2015 - link

    That's a good thought, unfortunately I only have PCIe 1x slots. Doesn't look like that would prGA-P35-DS3Rovide any benefit. Reply

Log in

Don't have an account? Sign up now