Single Client Performance - CIFS & iSCSI on Windows

The single client CIFS and iSCSI performance of the Synology DS415+ was evaluated on the Windows platforms using Intel NASPT and our standard robocopy benchmark. This was run from one of the virtual machines in our NAS testbed. All data for the robocopy benchmark on the client side was put in a RAM disk (created using OSFMount) to ensure that the client's storage system shortcomings wouldn't affect the benchmark results. It must be noted that all the shares / iSCSI LUNs are created in a RAID-5 volume. The DS415+ manages to compare favorably against the ARM-based solutions, obviously. The real tussle in these single client scenarios is not against the other Rangeley NAS (Seagate NAS Pro), but against the QNAP TS-451 based on Bay Trail-D. Both DSM and QTS are mature operating systems. The higher core count in the DS415+'s Atom C2358 compared to the TS-451's Celeron J1800 probably help the former edge ahead in most of the benchmarks presented in the graphs below.

HD Video Playback - CIFS

2x HD Playback - CIFS

4x HD Playback - CIFS

HD Video Record - CIFS

HD Playback and Record - CIFS

Content Creation - CIFS

Office Productivity - CIFS

File Copy to NAS - CIFS

File Copy from NAS - CIFS

Dir Copy to NAS - CIFS

Dir Copy from NAS - CIFS

Photo Album - CIFS

robocopy (Write to NAS) - CIFS

robocopy (Read from NAS) - CIFS

We created a 250 GB iSCSI LUN / target and mapped it on to a Windows VM in our testbed. The same NASPT benchmarks were run and the results are presented below. The observations we had in the CIFS subsection above hold true here too.

HD Video Playback - iSCSI

2x HD Playback - iSCSI

4x HD Playback - iSCSI

HD Video Record - iSCSI

HD Playback and Record - iSCSI

Content Creation - iSCSI

Office Productivity - iSCSI

File Copy to NAS - iSCSI

File Copy from NAS - iSCSI

Dir Copy to NAS - iSCSI

Dir Copy from NAS - iSCSI

Photo Album - iSCSI

robocopy (Write to NAS) - iSCSI

robocopy (Read from NAS) - iSCSI

Platform Analysis Single Client Performance - CIFS & NFS on Linux
Comments Locked

41 Comments

View All Comments

  • ganeshts - Thursday, October 30, 2014 - link

    Encryption testing is with a single client. The limitation is on the client side which has only a single GbE link.

    Reason it is done this way is to make sure we have data that can be compared against other units that have been evaluated before.
  • thewishy - Friday, October 31, 2014 - link

    Well, the client side isn't entirely the problem here. You could do LACP on the client side too, and still only see gigabit. Ethernet was never designed to receive frames out of order, and the two interfaces aren't easily syncronised - so traffic between a pair of endpoints is sent over only one link. Fine and dandy for busy networks, poor in this scenario
  • Sonic01 - Tuesday, November 4, 2014 - link

    Makes sense, it's a shame you guys don't test this as some of us might be using a client or server configured with link aggregation.

    I've purchased this NAS, a LAG capable switch and network card for my desktop and server, will see what kind of performance I get...
  • xenol - Thursday, October 30, 2014 - link

    Gallery: Gallery Title!

    I laughed harder than I should at that.
  • shelbystripes - Thursday, October 30, 2014 - link

    Two questions I can't find the answers for anywhere:

    1) Does the 415+ come with ECC RAM?

    2) If not, does it work if you put ECC RAM in it?

    One of the key potential benefits of Avoton/Rangeley is support for ECC RAM, but Synology doesn't mention it, and it seems like the kind of thing you'd advertise (or at least list in the specifications) if you used it.
  • ganeshts - Thursday, October 30, 2014 - link

    Nope, no ECC RAM. The platform may support it, but Synology's board doesn't. At this price point, ECC support is difficult to get.
  • shelbystripes - Thursday, October 30, 2014 - link

    ganeshts: I don't understand this. I'm not saying I don't understand you, or don't believe you. (If I didn't think your answer was possible, I wouldn't have asked the question.) What I am saying is, I don't understand why ECC RAM isn't supported in this model.

    From the block diagram under "Platform Analysis", it appears that the memory controller is built into the CPU/SoC, and the C2538 they're using does support ECC RAM. DDR3 SODIMMs are 204-pin whether they're ECC or not, and while it's not really discussed in this review, a teardown on legionhardware.com shows the memory as a single SODIMM module. Since Synology is using an SoC with an integrated ECC-capable memory controller, I can't understand why they would leave out ECC memory support. It seems like it would have to be an active choice on their part not to, in order to discourage people from sticking in ECC RAM on their own. (Synology doesn't like its users upgrading RAM and claims that doing so will void the warranty, which is something the PC industry stopped pulling a decade ago.) All the necessary hardware should be there, right? So why doesn't it work if you just stuck an ECC UDIMM in there? Did Synology actively disable this feature of the SoC?
  • chubbypanda - Thursday, October 30, 2014 - link

    While dimensions and sockets for DDR3 and ECC DDR3 modules are physically the same, they've got different electrical layouts! Inserting regular memory module into ECC DDR3 equipped board would result in damaged memory module and possibly the board.

    As why Synology chose not to use ECC memory (despite they could have), Ganesh already answered that.
  • jabber - Friday, October 31, 2014 - link

    Plus it leaves them open to sell a version in the future that does support ECC and charge you an extra $400 for the benefit.
  • shelbystripes - Friday, October 31, 2014 - link

    Chubbypanda: Thanks for your reaponse, it put me on the right track.

    I was about to say that I don't buy this, since both ASUS and SuperMicro make Avoton boards that are listed as taking both ECC and non-ECC RAM. But on a closer look, only the SuperMicro mATX boards (which have full-size 240-pin DIMM sockets) claim to support both ECC and non-ECC RAM. Their mini-ITX boards (which have 204-pin SODIMM sockets) support ECC RAM only. The missing pins in SODIMMs must be ones that would allow cross-compatibility (probably by providing separate electrical signals for ECC and non-ECC RAM, at least for detection at startup).

    I think that's it. Since the Synology unit uses SODIMMs, it can only support one or the other, and they chose non-ECC. Boo. If (as jabber mentioned) they release a higher-end version with ECC RAM, I'll buy it... If I haven't given up waiting for it and built myself a FreeNAS box. I had been waiting and hoping for the inevitable Avoton Synology box, but I hadn't anticipated this.

Log in

Don't have an account? Sign up now