Final Words

As with all previous AMD APU launches, we're going to have to break this one down into three parts: CPU, the promise of HSA and GPU.

In a vacuum where all that's available are other AMD parts, Kaveri and its Steamroller cores actually look pretty good. At identical frequencies there's a healthy increase in IPC, and AMD has worked very hard to move its Bulldozer family down to a substantially lower TDP. While Trinity/Richland were happy shipping at 100W, Kaveri is clearly optimized for a much more modern TDP. Performance gains at lower TDPs (45/65W) are significant. In nearly all of our GPU tests, a 45W Kaveri ends up delivering very similar gaming performance to a 100W Richland. The mainstream desktop market has clearly moved to smaller form factors and it's very important that AMD move there as well. Kaveri does just that.

In the broader sense however, Kaveri doesn't really change the CPU story for AMD. Steamroller comes with a good increase in IPC, but without a corresponding increase in frequency AMD fails to move the single threaded CPU performance needle. To make matters worse, Intel's dual-core Haswell parts are priced very aggressively and actually match Kaveri's CPU clocks. With a substantial advantage in IPC and shipping at similar frequencies, a dual-core Core i3 Haswell will deliver much better CPU performance than even the fastest Kaveri at a lower price.

The reality is quite clear by now: AMD isn't going to solve its CPU performance issues with anything from the Bulldozer family. What we need is a replacement architecture, one that I suspect we'll get after Excavator concludes the line in 2015.

In the past AMD has argued that for the majority of users, the CPU performance it delivers today is good enough. While true, it's a dangerous argument to make (one that eventually ends up with you recommending an iPad or Nexus 7). I have to applaud AMD's PR this time around as no one tried to make the argument that CPU performance was somehow irrelevant. Although we tend to keep PR critique off of AnandTech, the fact of the matter is that for every previous APU launch AMD tried its best to convince the press that the problem wasn't with its CPU performance but rather with how we benchmark. With Kaveri, the arguments more or less stopped. AMD has accepted its CPU performance is what it is and seems content to ride this one out. It's a tough position to be in, but it's really the only course of action until Bulldozer goes away.

It's a shame that the CPU story is what it is, because Kaveri finally delivers on the promise of the ATI acquisition from 2006. AMD has finally put forth a truly integrated APU/SoC, treating both CPU and GPU as first class citizens and allowing developers to harness both processors, cooperatively, to work on solving difficult problems and enabling new experiences. In tests where both the CPU and GPU are used, Kaveri looks great as this is exactly the promise of HSA. The clock starts now. It'll still be a matter of years before we see widespread adoption of heterogeneous programming and software, but we finally have the necessary hardware and priced at below $200.

Until then, outside of specific applications and GPU compute workloads, the killer app for Kaveri remains gaming. Here the story really isn't very different than it was with Trinity and Richland. With Haswell Intel went soft on (socketed) desktop graphics, and Kaveri continues to prey on that weakness. If you are building an entry level desktop PC where gaming is a focus, there really isn't a better option. I do wonder how AMD will address memory bandwidth requirements going forward. A dual-channel DDR3 memory interface works surprisingly well for Kaveri. We still see 10 - 30% GPU performance increases over Richland despite not having any increase in memory bandwidth. It's clear that AMD will have to look at something more exotic going forward though.

For casual gaming, AMD is hitting the nail square on the head in its quest for 1080p gaming at 30 frames per second, albeit generally at lower quality settings. There are still a few titles that are starting to stretch the legs of a decent APU (Company of Heroes is practically brutal), but it all comes down to perspective. Let me introduce you to my Granddad. He’s an ex-aerospace engineer, and likes fiddling with stuff. He got onboard the ‘build-your-own’ PC train in about 2002 and stopped there – show him a processor more than a Pentium 4 and he’ll shrug it off as something new-fangled. My grandfather has one amazing geeky quality that shines through though – he has played and completed every Tomb Raider game on the PC he can get his hands on.

It all came to a head this holiday season when he was playing the latest Tomb Raider game. He was running the game on a Pentium D with an NVIDIA 7200GT graphics card. His reactions are not the sharpest, and he did not seem to mind running at sub-5 FPS at a 640x480 resolution. I can imagine many of our readers recoiling at the thought of playing a modern game at 480p with 5 FPS. In the true spirit of the season, I sent him a HD 6750, an identical model to the one in the review today. Despite some issues he had finding drivers (his Google-fu needs a refresher), he loves his new card and can now play reasonably well at 1280x1024 on his old monitor.

The point I am making with this heart-warming/wrenching family story is that the Kaveri APU is probably the ideal fit for what he needs. Strap him up with an A8-7600 and away he goes. It will be faster than anything he has used before, it will play his games as well as that new HD 6750, and when my grandmother wants to surf the web or edit some older images, she will not have to wait around for them to happen. It should all come in with a budget they would like as well.

Drawing Performance Conclusions
Comments Locked

380 Comments

View All Comments

  • retrospooty - Tuesday, January 14, 2014 - link

    "a low end cpu like the athlon X4 with a HD7750 will be considerably faster than any APU. So in this regard, I disagree with the conclusions that for low end gaming kaveri is the best solution."

    I get your point, but its not really a review issue , its a product issue. AMD certianly cant compete inthe CPU arena. They are good enough, but nowhere near Intel 2 generations ago (Sandy Bridge from 2011). They have a better integrated GPU, so in that sense its bte best integrated GPU, but as you mentioned, if you are into gaming, you can still get better performance on a budget by getting a budget add in card, so why bother with Kaveri?
  • Homeles - Tuesday, January 14, 2014 - link

    "I get your point, but its not really a review issue , its a product issue."

    Well, the point of a review is to highlight whether or not a product is worth purchasing.
  • mikato - Wednesday, January 15, 2014 - link

    I agree. He should have made analysis from the viewpoint of different computer purchasers. Just one paragraph would have worked, to fill in the blanks.. something like these -
    1. the gamer who will buy a pricier discrete GPU
    2. the HTPC builder
    3. the light gamer + office productivity home user
    4. the purely office productivity type work person
  • just4U - Tuesday, January 14, 2014 - link

    I can understand why he didn't use a 7750/70 with GDDR5 ... all sub $70 video cards I've seen come with ddr3. Your bucking up by spending that additional 30-60 bucks (sales not considered)
  • Computer Bottleneck - Tuesday, January 14, 2014 - link

    The R7 240 GDDR5 comes in at $49.99 AR---> http://www.newegg.com/Product/Product.aspx?Item=N8...

    So cheap Video cards can have GDDR5 at a low price point.
  • just4U - Tuesday, January 14, 2014 - link

    That's a sale though.. it's a $90 card.. I mean sure if it becomes the new norm.. but that hasn't been the case for the past couple of years.
  • ImSpartacus - Thursday, January 16, 2014 - link

    Yeah, if you get aggressive with sales, you can get $70 7790s. That's a lot of GPU for not a lot of money.
  • yankeeDDL - Tuesday, January 14, 2014 - link

    Do you think that once HSA is supported in SW we can see some of the CPU gap reduced?
    I'd imagine that *if* some of the GPU power can be used to help on FP type of calculation, the boost could be noticeable. Thoughts?
  • thomascheng - Tuesday, January 14, 2014 - link

    Yes, that is probably why the CPU floating point calculation isn't as strong, but we won't see that until developers use OpenCL and HSA. Most likely the big selling point in the immediate future (3 to 6 month) will be Mantle since it is already being implemented in games. HSA and OpenGL 2.0 are just starting to come out, so we will probably see more news on that 6 months from now with partial support in some application and full support after a year. If the APUs in the Playstation 4 and Xbox One are also HSA supported, we will see more games make use of it before general desktop applications.
  • yankeeDDL - Tuesday, January 14, 2014 - link

    Agreed. I do hope that the gaming consoles pave the way for more broad adoption of these new techniques. After all, gaming has been pushing most of the innovation for quite some time now.
    CPU improvement has been rather uneventful: I still use a PC with an Athlon II X2 @ 2.8GHz and with a decent graphic card is actually plenty good for most of the work. That's nearly a 5 year old CPU and I don't think there's a 2X improvement even going to a core i3. In any case, there have to be solution to improve IPC that go beyond some circuit optimization, and HSA seems promising. We'll all have to gain if it happens: it would be nice to have again some competition non the CPU side.

Log in

Don't have an account? Sign up now