Testing Platform

For our Kaveri testing AMD sent us two APUs – the top 95W A10-7850K SKU and the configurable TDP version of the A8-7600 APU, the latter of which can be set at 45W or 65W through the BIOS. The A8-7600 was tested in both power configurations, ultimately the difference between them both being only a few hundred MHz. The 65W configuration is only 200 MHz off the A10-7700K base frequency, and incidentally they both turbo to the same frequency of 3.8GHz.

Kaveri will be the first APU put through the mangle in terms of my new 2014 benchmarking suite, focusing on more compute tasks, video conversion in different software, and more real world scenarios geared for the prosumer.

We must thank the following companies for their contribution to the test beds:

Our test setup for AMD is as follows:

AMD APU TestBed
  SKU Cores CPU /
Turbo
DRAM
MHz
Power IGP SPs GPU
MHz
Kaveri APUs A10-7850K 2M/4T 3.7 GHz
4.0 GHz
2133 95W R7 512 720 MHz
A8-7600 2M/4T 3.3 GHz
3.8 GHz
2133 65W R7 384 720 MHz
A8-7600 2M/4T 3.1 GHz
3.3 GHz
2133 45W R7 384 720 MHz
Richland APUs A10-6800K 2M/4T 4.1 GHz
4.4 GHz
2133 100W 8670D 384 844 MHz
A10-6700T 2M/4T 2.5 GHz
3.5 GHz
1866 45W 8650D 384 720 MHz
A8-6500T 2M/4T 2.1 GHz
3.1 GHz
1866 45W 8550D 256 720 MHz
Trinity APUs A10-5800K 2M/4T 3.8 GHz
4.2 GHz
2133 100W 7660D 384 800 MHz
A8-5500 2M/4T 3.2 GHz
3.7 GHz
1866 65W 7560D 256 760 MHz
Memory AMD Radeon 2 x 8 GB DDR3-2133 10-11-11 1.65V
G.Skill RipjawsX 4 x 4 GB DDR3-2133 9-11-11 1.65V
G.Skill RipjawsZ 4 x 4 GB DDR3-1866 8-9-9 1.65V
Motherboards ASRock FM2A88X Extreme6+
ASRock FM2A88X-ITX+
Power Supply OCZ 1250W ZX Series
Storage OCZ 256GB Vertex 3 SSDs
Operating System Windows 7 64-bit SP1 with Core Parking updates
Video Drivers Graphics Driver Build 13.300 RC2 for Radeon R7
Catalyst 13.12 for all others

Unfortunately we were not able to source a 65W Richland part in time, however a midrange 65W Trinity part was on hand. The important thing to note is that within each power bracket, both the CPU frequencies and the supported memory changes depending on the architecture and the binning process AMD uses. The benchmarks in this review are run at the processors' maximum supported frequency, rather than any AMD Memory Profiles which the processor can also support via overclocking. This has implications in conjunction with the IPC or MHz difference.

For this review we also took a few Intel processors of varying TDPs:

Intel TestBed
  SKU Cores CPU /
Turbo
DRAM
MHz
Power IGP SPs GPU
MHz
Sandy Bridge i5-2500K 4C/4T 3.3 GHz
3.7 GHz
1600 95W HD 3000 12 850
Ivy Bridge i3-3225 2C/4T 3.3 GHz 1600 55W HD 4000 16 550
i7-3770K 4C/8T 3.5 GHz
3.9 GHz
1600 77W HD 4000 16 550
Haswell i3-4330 2C/4T 3.5 GHz 1600 54W HD 4600 20  
i7-4770K 4C/8T 3.5 GHz
3.9 GHz
1600 84W HD 4600 20  
i7-4770R
+ Iris Pro
4C/8T 3.2 GHz
3.9 GHz
1600 65W HD 5200 40  
Memory ADATA XPG 2 x 8 GB DDR3L-1600 9-11-9 1.35V
Motherboards ASUS Z87 Gryphon
Power Supply OCZ 1250W ZX Series
Storage OCZ 256GB Vertex 3 SSDs
Operating System Windows 7 64-bit SP1 with Core Parking updates
Video Drivers 15.28.20.64.3347 for HD 3000
15.33.8.64.3345 for HD 4000+4600

Unfortunately our stock of i5 and i3 processors is actually rather limited – Intel prefers to source the i7s when we review those platforms, but I was able to use a personal i3-3225 from my NAS and we sourced the Haswell i3 as well. Given that Ganesh has the BRIX Pro in for review, I asked him to run as many benchmarks from our gaming suite as I could, to see how well Intel's Haswell eDRAM (Crystalwell) equipped processors stand up to Kaveri’s GCN mêlée.

For reference we also benchmarked the only mid-range GPU to hand - a HD 6750 while connected to the i7-4770K.

Overclocking and Underclocking the A10-7850K

As part of the final testing for this review we did some basic overclocking on the A10-7850K processor. Despite our processor being an engineering sample, we would assume that it is as close/identical to the retail silicon as you can get, given that this is meant to be a review on which people make purchasing decisions.

Our A10-7850K CPU starts out with a peak voltage under load of 1.24 volts when running OCCT. From this point we clocked back to 3.5 GHz and 1.100 volts, with a full-on CPU load line calibration and adjusted turbo mode to equal the base clock. Our standard overclocking test applies – OCCT for five minutes, PovRay, and new for 2014, a run of LuxMark. At our settings, we test the system for stability by running these tests. If the system fails, the CPU voltage is raised 0.025 volts until the system is stable during testing. When stable, the system multiplier is then raised and our testing moves on to the new MHz range.

Our results are as follows:

There was an unexpected jump in the voltage required to move from 3.5 GHz to 3.6 GHz (likely hitting the limits of what we can easily attain on this process). The system would not remain stable until 1.225 volts as set in the BIOS.

We also did the power tests, measuring the power draw at the wall as the delta between idle and OCCT load:

As expected, raising the voltage has a significant effect on the power consumption of the processor. One thing I should point out is that even at stock, the power delivery VRMs were getting very hot to touch – so much in fact that the system generated significant errors without an active fan on them. This got worse as the system was overclocked. I am not sure if this is an effect of the platform or the motherboard, but it will be something to inspect in our motherboard reviews going forward.

The Kaveri Socket and Chipset Line Up: Today and Q1, No Plans for FX or Server(?) CPU Performance
Comments Locked

380 Comments

View All Comments

  • fteoath64 - Sunday, January 19, 2014 - link

    "Now we need a new one, a fully HSA compliant HyperTransport." Yes! The dedicated people working on new SuperComputers are doing exotic Interconnects close or exceeding 1TBytes/sec speeds but limited by distance naturally. I see that for HyperTransport 3.0 one can implement 10 channels for high aggregated bandwidth, but that will use more transistors. In a budget conscious die size, using eSRAM seems to be a good trick to boost the bandwidth without overt complexity or transistor budget. The downside is eSRAM suck constant power so it becomes a fixture in the TDP numbers. Iris PRO uses 128MB of eDRAM while Xbox One uses 32MB eSRAM. I think the least amount would be somewhere around 24MB for the x86 to be effective in getting effective RAM bandwidth high enough!.
    The cascading effect if that the memory controller becomes complex and eats into the transistor budget considerably. Seems like a series of moving compromises to get the required performance numbers vs power budget for TDP.
    I am actually very excited to see an Arm chip implementing HSA!!.
  • Samus - Wednesday, January 15, 2014 - link

    I don't get why AMD can't compete with Intel's compute performance like they were absolutely able to do a decade ago. Have they lost all their engineering talent? This isn't just a matter of the Intel manufacturing/fab advantage.
  • zodiacfml - Wednesday, January 15, 2014 - link

    oh no, after all that, I just came impressed with the Iris Pro. I believe memory bandwidth is needed for Kaveri to stretch its legs.
  • duploxxx - Wednesday, January 15, 2014 - link

    impressed with iris pro? for that price difference i would buy a mediocore CPU and dedicated GPU and run circles around it with any game....
  • oaf_king - Wednesday, January 15, 2014 - link

    I can point out some carpola here: "I am not sure if this is an effect of the platform or the motherboard, but it will be something to inspect in our motherboard reviews going forward." This sure discounts the major performance benefits you can achieve without faulty hardware. Search the real benchmarks on WCCF tech for A-10 7850 and be amazed. I can STRONGLY DOUBT the CPU has any issue running at 4ghz on a stock cooler/900mhz GPU. Yes the GPU overclock seems skipped over in this Anand review also, but should really pull it into the "useful" category for gaming!
  • oaf_king - Wednesday, January 15, 2014 - link

    recall AMD had some leaks suggesting 4ghz CPU / 900Mhz GPU. Is that possible after all? Apparently not all motherboards are faulty. If the TDP tops out at 148 at 4ghz, given the conservative power envelopes already placed on the chip, I'm sure it gets very good performance for between zero and ten extra dollars, and a couple seconds in the BIOS.
  • Fox McCloud - Wednesday, January 15, 2014 - link

    Maybe I was skim reading and missed it, but what are the idle power consumption figures for the A8-7600? I need a new home server and I have a iTX system, and mother boards with 6x SATA are slim. It seems the manufacturers only put them on AMD ITX boards, as Intel seem to max out at like 4. I wonder what power figures would be like if under clocked also. I might re-read the review!

    Excellent review as always guys. So in-depth, informative, technical and unbiased. This is why I love this site and trust your expert opinion :)
  • Zingam - Wednesday, January 15, 2014 - link

    AMDs PR: "The processor that your grandparents dream of!" FYEAHA!
  • keveazy - Wednesday, January 15, 2014 - link

    My i5 4440 costs the same as the a10-7850k. I don't think amd will ever compete. By the time they release something that would declare a significant jump, Intel would already have something new to destroy it by then.
  • duploxxx - Wednesday, January 15, 2014 - link

    compete to do what? general tasks in a day, just buy an SSD... cost? did check your motherboard price? GPU, did you check the 4600 performance vs a10? it runs circles around it unless you want to be stuck on low resolution with your gorgeous fast cpu.

    you see customers fool themselve not knowing what to buy for what. hey i have the best benchmarking cpu, but on daily tasks i can't even count the microseconds difference.

Log in

Don't have an account? Sign up now