Testing Platform

For our Kaveri testing AMD sent us two APUs – the top 95W A10-7850K SKU and the configurable TDP version of the A8-7600 APU, the latter of which can be set at 45W or 65W through the BIOS. The A8-7600 was tested in both power configurations, ultimately the difference between them both being only a few hundred MHz. The 65W configuration is only 200 MHz off the A10-7700K base frequency, and incidentally they both turbo to the same frequency of 3.8GHz.

Kaveri will be the first APU put through the mangle in terms of my new 2014 benchmarking suite, focusing on more compute tasks, video conversion in different software, and more real world scenarios geared for the prosumer.

We must thank the following companies for their contribution to the test beds:

Our test setup for AMD is as follows:

AMD APU TestBed
  SKU Cores CPU /
Turbo
DRAM
MHz
Power IGP SPs GPU
MHz
Kaveri APUs A10-7850K 2M/4T 3.7 GHz
4.0 GHz
2133 95W R7 512 720 MHz
A8-7600 2M/4T 3.3 GHz
3.8 GHz
2133 65W R7 384 720 MHz
A8-7600 2M/4T 3.1 GHz
3.3 GHz
2133 45W R7 384 720 MHz
Richland APUs A10-6800K 2M/4T 4.1 GHz
4.4 GHz
2133 100W 8670D 384 844 MHz
A10-6700T 2M/4T 2.5 GHz
3.5 GHz
1866 45W 8650D 384 720 MHz
A8-6500T 2M/4T 2.1 GHz
3.1 GHz
1866 45W 8550D 256 720 MHz
Trinity APUs A10-5800K 2M/4T 3.8 GHz
4.2 GHz
2133 100W 7660D 384 800 MHz
A8-5500 2M/4T 3.2 GHz
3.7 GHz
1866 65W 7560D 256 760 MHz
Memory AMD Radeon 2 x 8 GB DDR3-2133 10-11-11 1.65V
G.Skill RipjawsX 4 x 4 GB DDR3-2133 9-11-11 1.65V
G.Skill RipjawsZ 4 x 4 GB DDR3-1866 8-9-9 1.65V
Motherboards ASRock FM2A88X Extreme6+
ASRock FM2A88X-ITX+
Power Supply OCZ 1250W ZX Series
Storage OCZ 256GB Vertex 3 SSDs
Operating System Windows 7 64-bit SP1 with Core Parking updates
Video Drivers Graphics Driver Build 13.300 RC2 for Radeon R7
Catalyst 13.12 for all others

Unfortunately we were not able to source a 65W Richland part in time, however a midrange 65W Trinity part was on hand. The important thing to note is that within each power bracket, both the CPU frequencies and the supported memory changes depending on the architecture and the binning process AMD uses. The benchmarks in this review are run at the processors' maximum supported frequency, rather than any AMD Memory Profiles which the processor can also support via overclocking. This has implications in conjunction with the IPC or MHz difference.

For this review we also took a few Intel processors of varying TDPs:

Intel TestBed
  SKU Cores CPU /
Turbo
DRAM
MHz
Power IGP SPs GPU
MHz
Sandy Bridge i5-2500K 4C/4T 3.3 GHz
3.7 GHz
1600 95W HD 3000 12 850
Ivy Bridge i3-3225 2C/4T 3.3 GHz 1600 55W HD 4000 16 550
i7-3770K 4C/8T 3.5 GHz
3.9 GHz
1600 77W HD 4000 16 550
Haswell i3-4330 2C/4T 3.5 GHz 1600 54W HD 4600 20  
i7-4770K 4C/8T 3.5 GHz
3.9 GHz
1600 84W HD 4600 20  
i7-4770R
+ Iris Pro
4C/8T 3.2 GHz
3.9 GHz
1600 65W HD 5200 40  
Memory ADATA XPG 2 x 8 GB DDR3L-1600 9-11-9 1.35V
Motherboards ASUS Z87 Gryphon
Power Supply OCZ 1250W ZX Series
Storage OCZ 256GB Vertex 3 SSDs
Operating System Windows 7 64-bit SP1 with Core Parking updates
Video Drivers 15.28.20.64.3347 for HD 3000
15.33.8.64.3345 for HD 4000+4600

Unfortunately our stock of i5 and i3 processors is actually rather limited – Intel prefers to source the i7s when we review those platforms, but I was able to use a personal i3-3225 from my NAS and we sourced the Haswell i3 as well. Given that Ganesh has the BRIX Pro in for review, I asked him to run as many benchmarks from our gaming suite as I could, to see how well Intel's Haswell eDRAM (Crystalwell) equipped processors stand up to Kaveri’s GCN mêlée.

For reference we also benchmarked the only mid-range GPU to hand - a HD 6750 while connected to the i7-4770K.

Overclocking and Underclocking the A10-7850K

As part of the final testing for this review we did some basic overclocking on the A10-7850K processor. Despite our processor being an engineering sample, we would assume that it is as close/identical to the retail silicon as you can get, given that this is meant to be a review on which people make purchasing decisions.

Our A10-7850K CPU starts out with a peak voltage under load of 1.24 volts when running OCCT. From this point we clocked back to 3.5 GHz and 1.100 volts, with a full-on CPU load line calibration and adjusted turbo mode to equal the base clock. Our standard overclocking test applies – OCCT for five minutes, PovRay, and new for 2014, a run of LuxMark. At our settings, we test the system for stability by running these tests. If the system fails, the CPU voltage is raised 0.025 volts until the system is stable during testing. When stable, the system multiplier is then raised and our testing moves on to the new MHz range.

Our results are as follows:

There was an unexpected jump in the voltage required to move from 3.5 GHz to 3.6 GHz (likely hitting the limits of what we can easily attain on this process). The system would not remain stable until 1.225 volts as set in the BIOS.

We also did the power tests, measuring the power draw at the wall as the delta between idle and OCCT load:

As expected, raising the voltage has a significant effect on the power consumption of the processor. One thing I should point out is that even at stock, the power delivery VRMs were getting very hot to touch – so much in fact that the system generated significant errors without an active fan on them. This got worse as the system was overclocked. I am not sure if this is an effect of the platform or the motherboard, but it will be something to inspect in our motherboard reviews going forward.

The Kaveri Socket and Chipset Line Up: Today and Q1, No Plans for FX or Server(?) CPU Performance
Comments Locked

380 Comments

View All Comments

  • Fox5 - Tuesday, January 14, 2014 - link

    Where are the Iris Pro results in CLBenchmark? Where are the CPU results of CLBenchmark; is the GPU faster than Haswell's AVX2? Where's the rest of the compute benchmarks, the area that Kaveri is supposed to shine in?
  • JDG1980 - Tuesday, January 14, 2014 - link

    Incidentally, will HTPC be covered in a different review? MadVR could be a good use case for Kaveri, as it requires quite a bit of shader power but isn't that memory bandwidth intensive.
  • beomagi - Tuesday, January 14, 2014 - link

    Per charts, Why are 100W APUs slower in 1280x1024 than at higher resolutions??
  • beomagi - Tuesday, January 14, 2014 - link

    Also, 45W APUs are faster? Are the benchmarks different? The charts only mention resolution.
  • beomagi - Tuesday, January 14, 2014 - link

    Nevermind - I now see this is as a percent difference compared to the slower chip - the title said FPS and that threw me off.
    Ignore! :D
  • Dribble - Tuesday, January 14, 2014 - link

    Call me cynical but it's just the same as the previous gen. If you want a small form factor extreme budget gaming box these will be pretty good. For the rest of the world if you don't care about games you'd do better going Intel, and if you do intel + a proper graphics card.

    As with previous gen it comes with a load of marketing slide advantages, which if previous gen are anything to go by will come to nothing - I don't see the current range of AMD machines blowing away intel machines with opencl/stream/fusion/whatever - and that was what was on the previous set of marketing slides.

    I always thought their best bet was mobile - but these days that markets getting really tough now for AMD as Intel have just spent the last few years optimising power usage.
  • UtilityMax - Tuesday, January 14, 2014 - link

    The biggest elephant in the room is that very few average people (those who don't visit this web site) care for playing games on laptops (or even desktops, considering the consoles). Once you ignore the gaming performance, the A10 APU effectively has the performance of Core i3, but at a high price. A Fry's or Best Buy "special" laptop with Core i3 can cost as low as $400 or less. But the A10 laptops cost around $500. Intel's pricing is pretty aggressive on the low end IMHO.
  • jimjamjamie - Thursday, January 16, 2014 - link

    Not just in laptops, the price/performance ratio of the dual-core Pentiums is extremely good - the Haswell-based Pentium G3220 (3GHz dual core, 3.5MB cache) is available in the UK for just over £40, which is excellent value.
  • Nagorak - Wednesday, January 15, 2014 - link

    Yes, the issue is that the hybridization of CPU/GPU really provides no advantages. For someone actually playing games the GPU is still too weak and they'd be better off with a discrete card. For someone not playing games the quality of the integrated GPU doesn't matter.

    Maybe I'm wrong and there are tons of people out there playing games at ~30 FPS with low settings. I just don't see why someone who wants to play games wouldn't try to cough up an extra $100 for a discrete GPU, and if you don't play games then even Intel's older HD GPUs are fine.
  • mikato - Wednesday, January 15, 2014 - link

    *For someone actually playing [newer 3D intensive] games the GPU is still too weak and they'd be better off with a discrete card. Yep
    *For someone actually playing [older or lighter] games the GPU is good enough and you end up with a cheaper overall package without needing a discrete card.
    *For someone not playing games, they will benefit big time from HSA eventually. Not there yet and depends on the software.

    There are probably more people in the last two categories if you think about it. AMD isn't for us gamers right now unfortunately. And it's going to take a while for adoption for HSA to bring in the third category of people.

Log in

Don't have an account? Sign up now