Overclocking

Our final evaluation criteria is overclocking. Since the 290 Tri-X OC is based on AMD’s reference board, the card has the same overclocking functionality and capabilities as any reference card. Which is to say that we have voltage control and monitoring, but the board itself is not particularly engineered for extreme overclocking. At the same time the nature of putting together a card like the 290 Tri-X OC means that Sapphire is doing some degree of binning,

Radeon R9 290 Overclocking
  Sapphire Radeon R9 290 Tri-X OC Ref. Radeon R9 290
Shipping Core Clock 699MHz 662MHz
Shipping Boost Clock 1000MHz 947MHz
Shipping Memory Clock 5.2GHz 5GHz
Shipping Boost Voltage ~1.18v ~1.18v
     
Overclock Core Clock 824MHz 790MHz
Overclock Boost Clock 1125MHz 1075MHz
Overclock Memory Clock 6GHz 5.6GHz
Overclock Max Boost Voltage ~1.23v ~1.18v

For overclocking the 290 Tri-X OC, we increased the PowerTune limit by 20% and the voltage by 50mV to what’s roughly 1.23v. Out of this we were able to get another 125MHz (13%) out of the GPU and 800MHz (15%) out of the VRAM, now topping out at 1125MHz for the GPU boost clock, and 6GHz for the VRAM. The final clockspeeds are better than our previous efforts at overclocking our reference 290 (which was prior to voltage control), although only moderately so.

OC: Metro: Last Light - 2560x1440 - High Quality

OC: Company of Heroes 2 - 2560x1440 - Maxium Quality + Med. AA

OC: Company of Heroes 2 - Min. Frame Rate - 2560x1440 - Maxium Quality + Med. AA

OC: Bioshock Infinite - 2560x1440 - Ultra Quality + DDoF

OC: Battlefield 3 - 2560x1440 - Ultra Quality + 4x MSAA

OC: Crysis 3 - 2560x1440 - High Quality + FXAA

OC: Total War: Rome 2 - 2560x1440 - Extreme Quality + Med. Shadows

Starting first with gaming performance, as a more extensive overclock relative to Sapphire’s factory overclock, the performance gains from our own overclocking have yielded very solid results, despite the fact that this isn’t explicitly an overclocking board. Between the 13% core overclock and 15% memory overclock, the average performance increase measures in at 12%, varying depending on whether a game is more bandwidth limited, GPU limited, or CPU limited.

At 12% faster the overclocked 290 Tri-X OC is fast enough to largely close the gap between it and the reference GeForce GTX 780 Ti. Otherwise it will consistently outscore the 290X in “uber” mode, even in spite of the pared down nature of the Hawaii GPUs used in 290 cards.

OC: Load Power Consumption - Crysis 3

OC: Load Power Consumption - FurMark

The power consumption penalty for overclocking is significant, but outside of the outright power limited FurMark, is not unreasonable. Under Crysis 3 the additional 13% in performance comes at a cost of 30W at the wall, most of which will be from the video card.

OC: Load GPU Temperature - Crysis 3

OC: Load GPU Temperature - FurMark

Along with power consumption overclocking also comes with the expected increase in operating temperatures. Under Crysis 3 this is an increase of 5C to 75C, while for FurMark (where the increase in power was greater) this is an additional 7C to 81C. FurMark definitely gives the Tri-X cooler a harder time when the video card is overclocked, but as this is a worst case scenario it also means that operating temperatures should still remain well under 80C, as evidenced by Crysis 3.

OC: Load Noise Levels - Crysis 3

OC: Load Noise Levels - FurMark

Even with our overclocking the 290 Tri-X OC still holds up rather well when it comes to Crysis 3. At 45.6dB this is a 4.5dB increase in noise, more than enough to be noticed, but notably it’s still quieter than our stock 280X and 7970GE, both of which are similarly open air coolers. FurMark on the other hand pushes the card much harder since it’s reaching the new 120% PowerTime power limit, leading to a jump in noise of just under 10dB to 52.8dB. Even faced with an overclocked FurMark the Tri-X cooler is still holding up very well, though we’ve clearly reached the point (with regards to thermal loads) where it has lost its near-silence.

Power, Temperature, & Noise Final Words
Comments Locked

119 Comments

View All Comments

  • skiboysteve - Thursday, December 26, 2013 - link

    I had that even worse. Card would crash in Diablo 3 from overheating. Case was super hot and GPU fan was pegged on high. I sold it (6850) and bought a GTX 660 because it had a blower, now its quiet and cool.
  • Th-z - Wednesday, December 25, 2013 - link

    Thus the problem lies, people like small form factor these days. Open air cooler can complicate how the air is moved. Take the beta Steam Machine for example, the GPU is in a chamber that uses riser to reduce the size of the case. The design is simple for a blower cooler, the air basically moves one way all the way. If it's an open air cooler, both hot and cool air are intermingling, additional fans would need to help moving the air, and air path would also need a redesign.

    I agree with Ryan, AMD simply needs to do better job with their reference cooler, perhaps their AIB partners can step in and make their own blower cards that perform better than AMD's reference design.
  • Ryan Smith - Thursday, December 26, 2013 - link

    I had originally intended to put the following discussion about blowers versus open air coolers in the article, but it came off as too disjoint from the rest of the article so I dropped it. But since you’re asking, I’ll publish it here in the comments.

    ---

    When looking at the cooling performance of the 290 Tri-X OC relative to the reference 290, it’s important to keep in mind that the Tri-X OC’s cooling advantages don’t come for free; there are tradeoffs to be made for achieving this kind of performance. At the risk of sounding like a broken record, open air coolers can be very high performance solutions, however there are some important differences between open air coolers and blowers that need to be taken into consideration.

    Between the two types of coolers, blowers are the more compatible and more self-sufficient due to the fact that the blower design is essentially self-exhausting. By blowing hot air directly outside of the chassis, blowers aren’t significantly reliant on the chassis cooling, meaning they’ll work in a wide variety of cases and environments, especially small form factor designs or multi-GPU setups. The one downside to blowers is that the limited amount of space available to funnel air (about 1 PCIe slot’s width) requires that all of that airflow is generated by one fan, which in turn may have to run at a relatively high speed to move enough air. The end result being that while blowers don’t have to be loud, they’re generally louder than open air coolers.

    Open air coolers on the other hand essentially punt on the issue of cooling, focusing solely on removing heat from the GPU and related components, and making removal of that hot air the job of the chassis. This allows open air coolers to utilize numerous large, slow fans that can move a good deal of air without generating a lot of noise, but only a small portion of that air is exhausted outside the chassis by the open air cooler itself. The bulk of the work for removing heat from the chassis falls to the chassis itself, which can be beneficial as chassis fans are larger and quieter still, potentially making the combined solution a very quiet own.

    When it comes to open air coolers the drawback here two-fold. The first is simply that open air cards need breathing room; even though most cards are only two slots wide, the slot adjacent to the card needs to be kept complete open in order to permit airflow (even a small card like a sound card would still be an issue). The second drawback is that if the chassis can’t handle the heat load – and keep in mind that a single 290 under load is going to generate more heat than the rest of the system combined – then open air coolers will struggle to work well while at the same time the heat from the video card will have a run-on effect that makes it hard to properly cool the other components in the chassis.

    Because of the compatibility and self-reliance aspects of blowers, blowers are the coolers used on most high-end reference cards, as the design allows for the reference card design to be used in the widest range of systems. In that sense blowers represent a nice middle ground between functionality and noise, with a high quality blower capable of bringing all of that functionality without bringing too much noise. NVIDIA’s GTX Titan blower being a good example of what a blower is capable of at the high end, while the reference 290 is an unfortunate example of what a blower looks like if it’s struggling to keep up. On the other hand an open air cooler can scale up better while still maintaining very low noise levels – as exemplified by cards like the 290 Tri-X OC and the Radeon HD 7990 – but the compatibility issues mean that the resulting cards can’t be used as in wide a range of systems, something that can be problematic for reference cards.

    In the end however there’s a need for both kinds of coolers to be on the market. As neither style is without its flaws, having the two vastly different designs allows for a wider range of market coverage than what either cooler alone could accomplish.
  • Jwboo65 - Monday, December 30, 2013 - link

    Typo in the third paragraph. The very last word. Nice article. Thanks Ryan!
  • Wade_Jensen - Wednesday, December 25, 2013 - link

    Would someone be willing to explain binning? I hear Anand and Ryan and Ian talking about it surrounding CPU and GPUs scaling but its never explained. But how is it accomplished and/or caused in manufacturing? Is that how intel has differing performance in an i5 and i7 of identical tdp, HT aside?

    Yes, I've tried Google. :p
  • sheh - Wednesday, December 25, 2013 - link

    Take a million chips, run them through test equipment to collect data on voltage, heat, max frequency, functionality of cores/subunits. Sort them according to the results, do any external tweaking if needed (e.g., I think old CPUs has things like resistors on the package to disable/limit features), print the correct model number/put on the sticker, sell.
  • Sunburn74 - Wednesday, December 25, 2013 - link

    Essentially, if you manufacture 100 chips with target level of perfomance X, some will exceed target level of performance X, some will just barely reach it, and some will underperform and not quite reach the target.

    As the supplier, you bin/plan to sell the overperformers as your highest level product (ie gtx 9000 OC uber ultra TI lightning thor odin card), your on target performers as some mid range product (gtx 8950), and your poor performers as some lower range product (gtx 7000 energy sipper)

    Its more complex than that in the real world as intel/nvidia/amd offer a large multitude of products, but in a nutshell that's binning.
  • Sunburn74 - Wednesday, December 25, 2013 - link

    BTW, this also explains why the best overclocking products generally tend to be on the higher end of the product spectrum
  • Wade_Jensen - Wednesday, December 25, 2013 - link

    Thanks guys! :)
  • gonks - Wednesday, December 25, 2013 - link

    Ryan, there's a typo on the gaming charts and oc charts, on the headers says "Maxium quality".
    Great review btw!

Log in

Don't have an account? Sign up now