Conclusions

Intel has again done a remarkably good job with the Xeon "Ivy Bridge EP". Adding more cores can easily lead to bad scaling or even to situations where performance decreases. The new Xeon E5 adds about 30% performance across the line, in more or less the same power envelope. Single-threaded performance does not suffer either (though it also fails to improve in most scenarios). Even better, Intel's newest CPU works inside the same socket as its predecessor. That's no small feat, as there have been changes in core count and uncore, and as a result the electrical characteristics change too.

At the end of last year, AMD was capable of mounting an attack on the midrange Xeons by introducing Opterons based on the "Piledriver" core. That core improved both performance and power consumption, and Opteron servers were tangibly cheaper. However, at the moment, AMD's Opteron is forced to leave the midrange market and is relegated to the budget market. Price cuts will once again be necessary.

Considering AMD's "transformed" technology strategy , we cannot help but be pessimistic about AMD's role in the midrange and high-end x86 server market. AMD's next step is nothing more than a somewhat tweaked "Opteron 6300". Besides the micro server market, only the Berlin CPU (4x Steamroller, integrated GPU) might be able to turn some heads in HPC and give Intel some competition in that space. Time will tell.

In other words, Intel does not have any competition whatsoever in the midrange and high-end x86 server market. The best Xeons are now about 20% more expensive, but that price increase is not tangible in most markets. The customers buying servers for ERP, OLTP and virtualization will not feel this, as a few hundred dollars more (or even a couple thousand) for the CPUs pales in comparison to the yearly software licenses. The HPC people will be less happy but many of them are spending their money on stream processors like the Xeon Phi, AMD Firestream, or NVIDIA Tesla. Even in the HPC market, the percentage of the budget spent on CPUs is decreasing.

Luckily, Intel still has to convince people that upgrading is well worth the trouble. As a result you get about 25% more multi-threaded/server performance, about 5-10% higher single-threaded performance (a small IPC boost and a 100MHz speed bump), and sligthly lower power consumption for the same price. It may not be enough for some IT departments, but those that need more performance within the same power envelope will probably find a lot to like with the new Xeons.

Compression and Decompression
Comments Locked

70 Comments

View All Comments

  • mczak - Tuesday, September 17, 2013 - link

    Yes that's surprising indeed. I wonder how large the difference in die size is (though the reason for two dies might have more to do with power draw).
  • zepi - Tuesday, September 17, 2013 - link

    How about adding turbo frequencies to sku-comparison tables? That'd make comparison of the sku's a bit easier as that is sometimes more repsentative figure depending on the load that these babies are run.
  • JarredWalton - Tuesday, September 17, 2013 - link

    I added Turbo speeds to all SKUs as well as linking the product names to the various detail pages at AMD/Intel. Hope that helps! (And there were a few clock speed errors before that are now corrected.)
  • zepi - Wednesday, September 18, 2013 - link

    Appreciated!
  • zepi - Wednesday, September 18, 2013 - link

    For most server buyers things are not this simple, but for armchair sysadmins this might do:
    http://cornflake.softcon.fi/export/ivyexeon.png
  • ShieTar - Tuesday, September 17, 2013 - link

    "Once we run up to 48 threads, the new Xeon can outperform its predecessor by a wide margin of ~35%. It is interesting to compare this with the Core i7-4960x results , which is the same die as the "budget" Xeon E5s (15MB L3 cache dies). The six-core chip at 3.6GHz scores 12.08."

    What I find most interesting here is that the Xeon manages to show a factor 23 between multi-threaded and single-threaded performance, a very good scaling for a 24-thread CPU. The 4960X only manages a factor of 7 with its 12 threads. So it is not merely a question of "cores over clock speed", but rather hyperthreading seems to not work very well on the consumer CPUs in the case of Cinebench. The same seems to be true for the Sandy Bridge and Haswell models as well.

    Do you know why this is? Is hyperthreading implemented differently for the Xeons? Or is it caused by the different OS used (Windows 2008 vs Windows 7/8)?
  • JlHADJOE - Tuesday, September 17, 2013 - link

    ^ That's very interesting. Made me look over the Xeon results and yes, they do appear to be getting close to a 100% increase in performance for each thread added.
  • psyq321 - Tuesday, September 17, 2013 - link

    Hyperthreading is the same.

    However, HCC version of IvyTown has two separate memory controllers, more features enabled (direct cache access, different prefetchers etc.). So it might scale better.

    I am achieving 1.41x speed-up with dual Xeon 2697 v2 setup, compared to my old dual Xeon 2687W setup. This is so close to the "ideal" 1.5x scaling that it is pretty amazing. And, 2687w was running on a slightly higher clock in all-core turbo.

    So, I must say I am very happy with the IvyTown upgrade.
  • garadante - Tuesday, September 17, 2013 - link

    It's not 24 threads, it's 48 threads for that scaling. 2x physical CPUs with 12 cores each, for 24 physical cores and a total of 48 logical cores.
  • Kevin G - Tuesday, September 17, 2013 - link

    Actually if you run the numbers, the scaling factor from 1 to 48 threads is actually 21.9. I'm curious what the result would have been with Hyperthreading disabled as that can actually decrease performance in some instances.

Log in

Don't have an account? Sign up now