A Custom Form Factor PCIe SSD

In the old days, increasing maximum bandwidth supported by your PATA/SATA interface was always ceremonial at first. Hard drives were rarely quick enough to need more than they were given to begin with, and only after generations of platter density increases would you see transfer rate barriers broken. Then came SSDs.

Not only do solid state drives offer amazingly low access latency, but you can hit amazingly high bandwidth figures by striping accesses across multiple NAND Flash die. A 256GB SSD can be made up of 32 independent NAND die, clustered into 8 discrete packages. A good controller will be able to have reads/writes in flight to over half of those die in parallel. The result is a setup that can quickly exceed the maximum bandwidth that SATA can offer. Today that number is roughly 500MB/s for 6Gbps SATA, which even value consumer SSDs are able to hit without trying too hard. Rather than wait for another rev of the SATA spec, SSD controller makers started eyeing native PCIe based controllers as an alternative.

You can view a traditional SSD controller as having two sides: one that talks to the array of NAND flash, and one that talks to the host system’s SATA controller. The SATA side has been limiting max sequential transfers for a while now at roughly 550MB/s. The SATA interface will talk to the host’s SATA interface, which inevitably sits on a PCIe bus. You can remove the middle man by sticking a native PCIe controller on the SSD controller. With SATA out of the way, you can now easily scale bandwidth by simply adding PCIe lanes. The first generation of consumer PCIe SSDs will use PCIe 2.0, since that’s what’s abundant/inexpensive and power efficient on modern platforms. Each PCIe lane is good for 500MB/s, bidirectional (1GB/s total). Apple’s implementation uses two PCIe 2.0 lanes, for a total of 1GB/s of bandwidth in each direction (2GB/s aggregate).

The move to a PCIe 2.0 x2 interface completely eliminates the host side bottleneck. As I pointed out in my initial look at the new MacBook Air, my review sample’s 256GB SSD had no problems delivering almost 800MB/s in peak sequential reads/writes. Do keep in mind that you’ll likely see slower results on the 128GB drive.

Users have spotted both Samsung and SanDisk based PCIe SSDs in the 2013 MacBook Airs. Thankfully Apple doesn’t occlude the controller maker too much in its drive names. An SM prefix denotes Samsung:

My review sample featured a Samsung controller. There’s very little I know about the new Samsung controller, other than it is a native PCIe solution that still leverages AHCI (this isn't NVMe). Within days of Apple launching the new MBAs, Samsung announced its first consumer PCIe SSD controller: the XP941. I can only assume the XP941 is at least somewhat related to what’s in the new MBA.

The Samsung controller is paired with a 512MB DDR3 DRAM and 8 Samsung 10nm-class (10nm - 20nm process node) MLC NAND devices. 

New PCIe SSD (top) vs. 2012 MBA SATA SSD (bottom) - Courtesy iFixit

Despite moving to PCIe, Apple continues to use its own proprietary form factor and interface for the SSD. This isn’t an M.2 drive. The M.2 spec wasn’t far enough along in time for Apple to use it this generation unfortunately. The overall drive is smaller than the previous design, partially enabled by Samsung’s smaller NAND packages.

Absolutely Insane Battery Life PCIe SSD Performance
Comments Locked

233 Comments

View All Comments

  • malcolmcraft - Thursday, October 9, 2014 - link

    MacBook Air is absolutely fantastic! It is also interesting that it's the highest rated laptop among consumers (see http://www.consumertop.com/best-laptop-guide/)... I would not trade mine for anything.
  • darwinosx - Monday, July 8, 2013 - link

    If you read the review you are commenting on you would know its not a terrible display.
  • Subyman - Monday, June 24, 2013 - link

    Did you even read Anand's article? He explains why.
  • sigmatau - Monday, June 24, 2013 - link

    Yes, apparently it is good to have a long battery life so you can be able to stare at a horrible display for as long as possible. I'd rather have that display in a $400 laptop. Actually, not even at that price point.
  • designerfx - Monday, June 24, 2013 - link

    exactly. I laugh when people look at GPU performance when they forget that it's at 1366x768. You can get better (and AMD does) in IGP.
  • josef195 - Tuesday, August 20, 2013 - link

    I laugh when people complain about good GPU performance at 1366x768 when it's actually 1440x900
  • jmmx - Monday, June 24, 2013 - link

    hardly a horrible display! Have you ever seen one? Not only are they very fine - though admittedly not as high resolution as others, but according to one monitor expert - only Apple displays have a consistency and an out-of-the-box color setting that is very close to professionally calibrated.
  • sigmatau - Tuesday, June 25, 2013 - link

    OK, I will say that Apple offers some of the best displays, but the best 1366x768 display is still terrible even on a 13" display. Not sure why Apple didn't go with a 1080p display with haswell since any increase battery waste from the display should be more than mitigated by the increased efficiency of the CPU/GPU. It's not like anyone does any serious gaming on these laptops so a higher resolution display will not be affected there either.
  • KitsuneKnight - Tuesday, June 25, 2013 - link

    The display is 1440x900 on the 13", not 1366x768 (that's the 11"). It's also one of the damn nicest displays I've ever had the pleasure of using (even the viewing angles doesn't bother me, maybe because it's the only laptop I've used with a decent henge).

    Personally, I'd opt for a 12 hour battery life over a retina-class display. Ideally, I'd have both, but it'll be quite a while before that becomes a possibility in any machine like the Air.
  • ThreeDee912 - Monday, June 24, 2013 - link

    I'm not sure if it's the same panel, but the 2010 and 2011 reviews tested the LCD, and the panels had some of the best contrast ratios and black/white levels out of any TN panels at the time. It's no IPS, but they're still pretty darn good compared to everything else. While it would be nice if Apple made the panels IPS, I think the current panel resolution is fine.

    http://www.anandtech.com/show/3991/apples-2010-mac...
    http://www.anandtech.com/show/4528/the-2011-macboo...

    Also, I'm not sure why some people want to run an unscaled UI on super high-res panels, especially on laptops of this size. Yes, some smartphones have higher resolutions screens, but they scale things up so it's easier to read. Just stuffing in a high-res panel for the heck of it isn't the way to do things.

Log in

Don't have an account? Sign up now