SoCs and Graphics

Intel isn’t talking about implementations of Silvermont today other than to say that it will show up in smartphones (Merrifield), tablets (Baytrail), automotive (unannounced), communications infrastructure products (Rangeley) and microservers (Avoton). Baytrail, the tablet implementation of Silvermont, will be available by the end of this year running both Windows 8 (8.1/Blue?) and Android. Silvermont based Merrifield phones will show up early in 2014.

What we know about Baytrail is that it will be a quad-core implementation of Silvermont paired with Intel’s own Gen 7 graphics. Although we don’t know clock speeds, we do know that Baytrail’s GPU core will feature 4 EUs - 1/4 the number used in Ivy Bridge’s Gen7 implementation (Intel HD 4000). Ultimately we can’t know how fast the GPU will be until we know clock speeds, but I wouldn’t be too surprised to see something at or around where the iPad 4’s GPU is today. Given Intel’s recent announcements around Iris and Iris Pro, it’s clear that the mobile team hasn’t yet had the graphics wakeup call that the Core team just got - but I suspect the Atom group will get there sooner rather than later. Intel’s eDRAM approach to scaling Haswell graphics (and CPU) performance has huge implications in mobile. I wouldn’t expect eDRAM enabled mobile SoCs based on Silvermont, but I wouldn’t be too surprised to see something at 14nm.

Penryn-Class Performance

When Atom first came out, I put its CPU performance in perspective by comparing it to older Pentium M based notebooks. It turned out that a 1.6GHz Atom performed similarly to a 1.2GHz Pentium M. So how does Silvermont stack up in PC notebook terms?

On single threaded performance, you should expect a 2.4GHz Silvermont to perform like a 1.2GHz Penryn. To put it in perspective of actual systems, we’re talking about around the level of performance of an 11-inch Core 2 Duo MacBook Air from 2010. Keep in mind, I’m talking about single threaded performance here. In heavily threaded applications, a quad-core Silvermont should be able to bat even further up the Penryn line. Intel is able to do all of this with only a 2-wide machine (lower IPC, but much higher frequency thanks to 22nm).

There’s no doubt in my mind that a Baytrail Android tablet will deliver amazing performance, the real unknown is whether or not a Baytrail Windows 8 detachable/convertible will be fast enough to deliver a good enough legacy Windows experience. I suspect it’ll take Airmont before we really get there by my standards, but it’ll be close this round for sure.

What’ll really be interesting to see is how Silvermont fares in smartphones. Max clock speeds should be lower than what’s possible in a tablet, but not by all that much thanks to good power management. When viewed in that light, I don’t know that there’s a more exciting mobile architecture announced at this point. The ability to deliver 2010 11-inch MacBook Air performance in a phone is insane.

The Silvermont Module and Caches Tablet Expectations & Performance
Comments Locked

174 Comments

View All Comments

  • silverblue - Monday, May 6, 2013 - link

    I do wonder how much having a dual channel memory interface helps Silvermont, though. It's something that neither Atom nor Bobcat has enjoyed previously, and I've not heard much about Jaguar on this subject (ignoring the PS4, that is). AMD certainly has the lead on ISAs though, so regardless of how good Silvermont is, it's going to trail in some places.

    I'm a little confused as to the virtual lack of a comparison to AMD in this piece; yes, Intel did say they wanted to beat ARM at its own game, but with Jaguar-powered devices already in the wild and AMD sporting a new custom-CPU team for whoever wants whatever, this is going to be interesting.

    Benchmarks, please! ;)
  • powerarmour - Monday, May 6, 2013 - link

    Atom had dual channel memory with the ION chipset btw.
  • silverblue - Monday, May 6, 2013 - link

    Really? Oh well, in that case then, maybe not too much.
  • Spunjji - Wednesday, May 8, 2013 - link

    Only until Intel murdered that, of course :|
  • ajp_anton - Monday, May 6, 2013 - link

    Where did you find "8x" in the slides?
  • Gigaplex - Tuesday, May 7, 2013 - link

    AMDs HSA is most definitely something to be enthusiastic about.
  • theos83 - Monday, May 6, 2013 - link

    You're right, I've seen this tendency in AT's reviews and discussions as well. I understand that a lot of it comes from reviewing PC components and processors where Intel dominated the market. Also, most of the slides here are marketing material. For example, the 22nm Ivy Bridge tri-gate plots have been out since 2011. True, Intel is the first and only foundry to bring FinFETs to the market successfully and I applaud them for that. However, the performance vs power advantage is not that evident, since even though Tri-gates allow 100mV reduction in threshold voltage and hence, supply voltage, various blogs have reported that most Ivy bridge processors did not scale down supply voltage below 0.9V. FinFETs are great for high performance parts, however, you need to really pay attention to reliability and variation to make it successful for SoCs, they are a completely different ball-game.

    Also, the rest of the SoC makers already have roadmaps ready for the future, they are a fast moving target. Hence lets see benchmarked numbers from Intel processors before jumping on the marketing bandwagon.
  • Pheesh - Monday, May 6, 2013 - link

    "However, the performance vs power advantage is not that evident, since even though Tri-gates allow 100mV reduction in threshold voltage and hence, supply voltage, various blogs have reported that most Ivy bridge processors did not scale down supply voltage below 0.9V." Didn't the start of the article cover that they are using a different manufacturing process for these lower power SOC's as compared to ivy bridge processors?
  • saurabhr8here - Monday, May 6, 2013 - link

    The SoC process has some differences in the metal stack for higher density and has additional transistor flavors (longer channel lengths). Check Intel's IEDM 2012 paper for more information, however, the truth is that their tri-gate process improvements claimed in the 'plots' shown and actual performance improvements in processors have a significant gap. I think that Intel tri-gates are great, but they aren't as 'wonderful' as presented in the marketing slides.
  • Krysto - Monday, May 6, 2013 - link

    Thank You! People are starting to get it.

Log in

Don't have an account? Sign up now