Software Support

Calxeda supports Ubuntu and Fedora, though any distribution based on the (32-bit) ARM Linux kernel should in theory be able to run on the EnergyCore SoCs. As for availability, there are already prebuilt Highbank kernel images available in the Ubuntu ARM repository and Calxeda has set up a PPA of its own to ease its kernel development.

The company has also joined Linaro—the non-profit organization aiming to bring the open source ecosystem to ARM SoCs.

The ARM Server CPU

A dual Xeon E5 or Opteron 6300 server has much more processing power than most of us need to run one server application. That is the reason why it is not uncommon to see 10, 20 or even more virtual machines running on top of them. Extremely large databases and HPC applications are the noticeable exceptions, but in general, server purchasers are rarely worried about whether or not the new server will be fast enough to run one application.

Returning to our Boston Viridis server, the whole idea behind the server is not to virtualize but to give each server application its own physical node. Each server node has one quad-core Cortex-A9 with 4MB of L2 cache and 4GB of RAM. With that being the case, the question "what can this server node cope with?" is a lot more relevant. We will show you a real world load further in this review, but we thought it would be good to first characterize the performance profile of the EnergyCore-1000 at 1.4GHz. We used four different benchmarks: Stream, 7z LZMA compression, 7z LZMA decompression, and make/gcc building and compiling.

We compare the ECX-1000 (quad-core, 3.8~5W, 40nm) with an Intel Atom 230 (1.6GHz single-core plus Hyper-Threading, 4W TDP, 45nm), Atom N450 (1.66GHz single-core + HTT, 5.5W TDP, 45nm), Atom N2800 (1.86GHz dual-core + HTT, 6.5W, 32nm), and an Intel Xeon E5-2650L (1.8-2.3GHz octal-core, 70W TDP, 32nm).

The best comparable Atom would be the Atom S1200, which is Intel's first micro-server chip. However the latter was not available to us yet, but we are actively trying to get Intel's latest Atom in house for testing. We will update our numbers as soon as we can get an Atom S1200 system. The Atom N2800 should be very close to the S1200, as it has the same architecture, L2 cache size, TDP, and runs at similar clockspeeds. The Atom N2800 supports DDR3-1066 while Centerton will support DDR3-1333, but we have reason to believe (see further) that this won't matter.

The Atom 230/330 and N450 are old 45nm chips (2008-2010). And before you think using the Atom 230 and N450 is useless: the Atom architecture has not changed for years. Intel has lowered the power consumption, increased the clockspeed, and integrated a (slightly) faster memory controller, but essentially the Atom 230 has the same core as the latest Atom N2000. I quote Anand as he puts it succinctly: "Atom is in dire need of an architecture update (something we'll get in 2013)."

So for now, the Atom 230 and N450 numbers give us a good way to evaluate how the improvements in the "uncore" impact server performance. It is also interesting to see where the ECX-1000 lands. Does it outperform the N2800, or is just barely above the older Atom cores?

 

A Closer Look at the Server Node Benchmarking Configuration
Comments Locked

99 Comments

View All Comments

  • Madpacket - Wednesday, March 13, 2013 - link

    And all of a sudden AMD's acquisition of SeaMicro is starting to make sense. Thanks Johan, great article!
  • JohanAnandtech - Wednesday, March 13, 2013 - link

    I really really hope they downscale the current SeaMicro's soon. Because with a starting price at $139000, they are not catering to the typical SME :-).
  • joshv - Wednesday, March 13, 2013 - link

    It seems this has a very narrow application in VM hosting, but I am not sure it's applicable when you have the choice of just scaling up memory or process usage of the single instance Xeon server. For example, I could load 24 instances of my production middle tier on the ARM server - or I could run one instance on a Xeon server and give it all the memory and make sure it spawns enough threads to keep all the internal cores busy. Perhaps my middle tier software has issues with handling all that RAM, so maybe I run 4 instances of it as a process, not a biggy.

    I am going to bet that the Xeon server will win as it won't have the VM overhead.
  • Kurge - Wednesday, March 13, 2013 - link

    I would be interested in a bare metal comparison. Since you're serving up the same app why would you split it between 24 VMs on the Xeon server? It's a bit contrived.

    Just load up Server 2012 and IIS or Linux + Apache straight up on the Xeon and see how it performs.
  • MrSpadge - Wednesday, March 13, 2013 - link

    Very interesting!

    I'd prefer a fat machine with virtualized servers to get automatic load balancing, but it's not like one couldn't shuffle tasks around in the ARM farm. And there's room for improvement: be it the next Atom or the memory controller in the current ECX-1000 CPUs. And take a look at how badly they scale from 2 to 4 threads - surely, there's lot's of rooms left!
  • rubyl - Wednesday, March 13, 2013 - link

    What is the average CPU utilization for the Viridis nodes and for the Xeon system under the 5 different concurrency loads (for the 24 webserver workload)?
  • gercho - Wednesday, March 13, 2013 - link

    When you said " The next generation ARM servers are already on the way and will probably hit the market in the third quarter of this year. The "Midway" SoC is based on a 28nm (TSMC) Cortex-A15 chip. A 28nm A15 offers 50% higher single-threaded integer performance at slightly higher power levels and can address up to 16GB of RAM." As far as I know the A15 cores have 50% more performance but consume 3X more power, that's not "slightly".........
  • nofumble62 - Wednesday, March 13, 2013 - link

    50% more performance at 3X more power... reminding me of the Netburst architect.
  • thenewguy617 - Wednesday, March 13, 2013 - link

    Can you please point me to sources of your number?
    Thanks
  • Wilco1 - Thursday, March 14, 2013 - link

    Where on earth you do get that 3x from? So far no 28nm Cortex-A15 chips have been released. The A15 in the Exynos Octo uses about 1.25W per core at 1.8GHz according to Samsung. That's slightly more power than a Calxeda A9 uses per core, but the A15 gives twice the performance per core.

Log in

Don't have an account? Sign up now