Benchmark Configuration

First of all, a big thanks to Wannes De Smet, who assisted me the benchmarks. Below you can read the configuration details of our "real servers". The Atom machines are a mix of systems. The Atom 230 is part of a 1U server featuring a Pegatron IPX7A-ION motherboard with 4GB of DDR2-667. The N450 is found inside an ASUS EeePC netbook, and the Atom N2800 is part of Intel's DN2800MT Marshalltown mainboard. The latter has 4GB of DDR3-1333 while the former only has 1GB of DDR2-667.

Supermicro SYS-6027TR-D71FRF Xeon E5 server (2U Chassis)
CPU Two Intel Xeon processor E5-2660 (2.2GHz, 8c, 20MB L3, 95W)
Two Intel Xeon processor E5-2650L (1.8GHz, 8c, 20MB L3, 70W)
RAM 64/128GB (8/16x8GB) DDR3-1600 Samsung M393B1K70DH0-CK0
Motherboard X9DRT-HIBFF
Chipset Intel C600
BIOS version R 1.1a
PSU PWS-1K28P-SQ 1280W 80 Plus Platinum

The Xeon E5 CPUs have four memory channels per CPU and support DDR3-1600, and thus our dual CPU configuration gets eight DIMMs for maximum bandwidth. Each core supports Hyper-Threading, so we're looking at 16 cores with 32 threads.

Boston Viridis Server
CPU 24x ECX-1000 4c Cortex-A9 1.4GHz
RAM 24x Netlist 4GB (96GB) low-voltage ECC PC3L-10600W-9-10-ZZ DRAM
Motherboard 6x EC-cards
Chipset none
Firmware version ECX-1000-v2.1.5
PSU SuperMicro PWS-704P-1R 750Watt

Common Storage System

An iSCSI LIO Unified Target accesses a DataON DNS-1640 DAS. Inside the DAS we have set up eight Intel SSDSA2SH032G1GN (X25-E 32GB SLC) in RAID-0.

Software Configuration

The Xeon E5 server runs VMware ESXi 5.1. All vmdks use thick provisioning, independent, and persistent. The power policy is "Low Power". We chose the "Low Power" policy as this enables C-states while the impact on performance is minimal. All other systems use Ubuntu 12.10. The power management policy is "ondemand". This enables P-states on the Atom and Calxeda ECX-1000.

Software Support & The ARM Server CPU Measuring Bandwidth
Comments Locked

99 Comments

View All Comments

  • kfreund - Friday, March 15, 2013 - link

    Keep in mind that this is VERY early in the life cycle, and therefore costs are artificially high due to low volumes. Ramp up the volumes, and the prices will come WAY down.
  • wsw1982 - Wednesday, April 3, 2013 - link

    Ja, IF they have high volume. But even if there is high volume, it's shared between different ARM suppliers and needless to say, the ATOM. How much can it be for one company?

    But the question is where the ARM get the volume? less performance, comparable power consumption, less performance/watt rational (not this kind extreme bias case ), less flexibility, less software support (stability), vendor specific (you can build a normal server, but can you build up a massive parallel cluster?), oh, don't forgot, more (much more) expensive. Which company will sacrifice themselves to beef up the market volume of the ARM server?
  • Sputnik_b - Thursday, March 14, 2013 - link

    Hi Johan,
    Nice job benchmarking and analyzing the results. Our group at EPFL has recently done some work aimed at understanding the demands that scale-out workloads, such as web serving, place on processor architectures. Our findings very much agree with your benchmark conclusions for the Xeon/Calxeda pair. However, a key result of our work was that many-core processors (with dozens of simple cores per chip) are the sweet spot with regard to performance per TCO dollar. I encourage you to take a look at our work -- http://parsa.epfl.ch/~grot/pubs/SOP-TCO_IEEEMicro....
    Please consider benchmarking a Tilera system to round-out your evaluation.
    Best regards!
  • Sputnik_b - Thursday, March 14, 2013 - link

    Sorry, bad URL in the post above. This should work: http://parsa.epfl.ch/~grot/pubs/SOP-TCO_IEEEMicro....
  • aryonoco - Friday, March 15, 2013 - link

    LWN.net has a very interesting write-up on a talk given by Facebook's Director of Capacity Engineering & Analysis on the future of ARM servers and how they see ARM servers fit in with their operation. I think it gives valuable insight on this topic.

    http://lwn.net/SubscriberLink/542518/bb5d5d3498359... (free link)
  • phoenix_rizzen - Friday, March 15, 2013 - link

    ARM already has hardware virtualisation extensions. Linux-KVM has already been ported over to support it.
  • Andys - Saturday, March 16, 2013 - link

    Great article, finally good to see some realistic benchmarks run on the new ARM platform.

    But I feel that you screwed up in one regard: You should have tested the top Xoen CPU also - the E5-2690.

    As you know from your own previous articles, Intel's top CPUs are also the most power efficient under full load, and the price would still be cheaper than the full loaded Calxeda box anyway.
  • an3000 - Monday, March 25, 2013 - link

    It is a test using wrong software stack. Yes, I am not afraid to say that! Apache will never be used on such ARM servers. They are exact match for Memcached or Nginx or another set-get type services, like static data serving. Using Apache or LAMP stack is too much favorable for Xeon.
    What I would like to see is: Xeon server with max RAM non-virtualized running 4-8 (similar to core count) instances of Memcached/Nginx/lighttpd vs cluster of ARM cores doing the same light task. Measure performance and power usage.
  • wsw1982 - Wednesday, April 3, 2013 - link

    My suggestion will be let them run one hard-disk to one hard-disk copy and measure the power usage:)

Log in

Don't have an account? Sign up now