Final Words

I have to say I was very skeptical when I first heard that the 840 will use TLC NAND. Samsung kept the TLC/MLC divide between the 840 and 840 Pro quiet until it took the stage at the SSD Summit for good reason. Prior to the 840's launch TLC NAND was mostly used in low cost devices (USB sticks, cheap tablets, etc...)—no one would dare throw a TLC drive into a high performance PC. However, after spending a week with the 840 running various tests, I'm pleasantly surprised. After seeing how slow NAND can impact performance with other drives I didn't have high hopes for the 840 when I heard it used TLC NAND.

Fortunately, the 840 exceeded all our expectations. It's faster, overall, than most of the previous generation MLC NAND based SSDs we have tested, which says a lot about Samsung's skill with it comes to designing a controller and firmware. When you take slower and lower endurance NAND, there is much more you have to do at the controller and firmware level to get things right. You can't sacrifice too much endurance for performance or vice versa. While long term endurance is still unproven, Samsung is definitely upping the ante in terms of low-cost SSD performance.

What's just as surprising is that Samsung is the first manufacturer with a TLC NAND based SSD. Samsung was under no pressure to release a TLC drive but it managed to beat the competition without sacrificing performance. Samsung hasn't been too aggressive in the past, but since the 830 it's clear the company has tapped some new found energy.

The 840 is very important for two reasons. For starters, it really shows the benefits of being a vertically integrated SSD maker. Samsung could easily coordinate SSD development with TLC NAND production ramps to make the 840 launch a seamless reality. The second aspect of the 840 that makes it so important is that this now gives the market a new solution to driving SSD prices down.

Prior to the 840, if you wanted a low cost SSD you either had to sacrifice on capacity or performance (or both). Sacrifice enough on capacity and you end up being forced into a SSD + HDD caching solution. Sacrifice enough on performance and you end up with a bad SSD. If TLC NAND pricing ramps to where it should be, the 840 can deliver the best of both worlds: low-cost pricing with all of the quality (and a lot of the performance) of a more expensive drive.

I'm less concerned about the 840's impact on other high end drive/controller makers and more interested to see what it does to companies like Phison or SanDisk. If Samsung can make its pricing aggressive enough, there should be no reason to consider any of the slower controllers for lower cost drives. We've been wondering about what it would take to get SSDs into truly mainstream PCs and it seems like the Samsung SSD 840 is exactly the right path to take.

In the end, a lot will be up to the final pricing but I believe Samsung can and will be very aggressive with the 840. Samsung is the only manufacturer with a price benefit thanks to the cheaper NAND, which at least in theory allows them to price themselves lower than anyone else. I'm sure we will see some MLC drives being sold for less than the 840, but it's very hard to challenge the 840 in terms of performance, especially when taking Samsung's reliability track record into account. Consider also that as recently as July 2012, Samsung's 830 was priced roughly 50% higher than the current street prices; with the 256GB 830 now going for $200 (and sometimes less with sales), that's likely where the 840 will start before continuing the downward trend.

We will see about final pricing in a couple of weeks, but for now the 840 looks like the entry level SSD to buy. The 840 Pro is likely the drive to buy for your primary notebook/workstation, while the 840 is the drive to recommend for a relative who isn't as concerned with performance and has a much lighter workload. I have to say, this is the first performance/value split of an SSD line that's really made sense.

Power Consumption
Comments Locked

86 Comments

View All Comments

  • xdrol - Monday, October 8, 2012 - link

    You sir need to learn how SSDs work. Static data is not static on the flash chip - the controller shuffles it around, exactly because of wear levelling.
  • name99 - Tuesday, October 9, 2012 - link

    "I think Kristian should have made this all more clear because too many people don't bother to actually read stuff and just look at charts."

    Kristian is not the problem.
    There is a bizarre fraction of the world of tech "enthusiasts" who are convinced that every change in the world is a conspiracy to screw them over.

    These people have been obsessing about the supposed fragility of flash memory from day one. We have YEARS of real world experience with these devices but it means nothing to them. We haven't been screwed yet, but with TLC it's coming, I tell you.
    The same people spent years insisting that non-replacable batteries were a disaster waiting to happen.
    Fifteen years ago they were whining about the iMac not including a floppy drive, for the past few years they have been whining about recent computers not including an optical drive.
    A few weeks ago we saw the exact same thing regarding Apple's new Lightning connector.

    The thing you have to remember about these people is
    - evidence means NOTHING. you can tell them all the figures you want, about .1% failure rates, or minuscule return rates or whatever. None of that counts against their gut feeling that this won't work, or even better an anecdote that some guy some somewhere had a problem.
    - they have NO sense of history. Even if they lived through these transitions before, they cannot see how changes in 2000 are relevant to changes in 2012.
    - they will NEVER admit that they were wrong. The best you can possibly get out of them is a grudging acceptance that, yeah, Apple was right to get rid of floppy disks, but they did it too soon.

    In other words these are fools that are best ignored. They have zero knowledge of history, zero knowledge of the market, zero knowledge of the technology --- and the grandiose opinions that come from not actually knowing any pesky details or facts.
  • piiman - Tuesday, February 19, 2013 - link

    Then stick with Intel not because they last longer but they have a great warranty.(5 years) My drive went bad at about 3.5 years and Intel replaced it no questions asked and did it very quickly. I sent it in and had a new one 2 days after they received my old one. great service!
  • GTRagnarok - Monday, October 8, 2012 - link

    This is assuming a very exaggerated amplification of 10x.
  • Kristian Vättö - Monday, October 8, 2012 - link

    Keep in mind that it's an estimation based on the example numbers. 10x write amplification is fairly high for consumer workloads, most usually have something between 1-3x (though it gets a big bigger when taking wear leveling efficiency into account). Either way, we played safe and used 10x.

    Furthermore, the reported P/E cycle counts are the minimums. You have to be conservative when doing endurance ratings because every single die you sell must be able to achieve that. Hence it's completely possible (and even likely) that TLC can do more than 1,000 P/E cycles. It may be 1,500 or 3,000, I don't know; but 1,000 is the minimum. There is a Samsung 830 at XtremeSystems (had to remove the link as our system thought it was spam, LOL) that has lasted for more than 3,000TiBs, which would translate to over 10,000 P/E cycles (supposedly, that NAND is rated at 3,000 cycles).

    Of course, as mentioned at the end of the review, the 840 is something you would recommend to a light user (think about your parents or grandparents for instance), whereas the 840 Pro is the drive for heavier users. Those users are not writing a lot (heck, they may not use their system for days!), hence the endurance is not an issue.
  • A5 - Monday, October 8, 2012 - link

    Ah. I didn't know the 10x WA number was exceedingly conservative. Nevermind, then.
  • TheinsanegamerN - Friday, July 5, 2013 - link

    3.5 years is considering you are writing 36.5 GB of data a day. if the computer it is sitting in is mostly used for online work of document editing, youll get far more. the laptop would probably die long before the ssd did.
    also, this only apples to the tls ssds. mlc ssds last 3 times longer, so the 840 pro would be better for a computer kept longer than 3 years.
  • Vepsa - Monday, October 8, 2012 - link

    Might just be able to convince the wife that this is the way to go for her computer and my computer.
  • CaedenV - Monday, October 8, 2012 - link

    That is how I did it. My wife's old 80GB system drive died a bit over a year ago, and it was one of those issues of $75 for a decent HDD, or $100 for an SSD that would be 'big enough' for her as a system drive (60GB at the time). So I spent the extra $25, and it made her ~5 year old Core2Duo machine faster (for day-to-day workloads) than my brand new i7 monster that I had just build (but was still using traditional HDD at the time).

    I eventually got so frustrated by the performance difference that I ended up finally getting one for myself, and then after my birthday came then I spent my fun money on a 2nd one for RAID0. It did not make a huge performance increase (I mean it was faster in benchmarks, but doubling the speed of instant is still instant lol), but it did allow me to have enough space to load all my programs on the SSD instead of being divided between the SSD and HDD.
  • AndersLund - Sunday, November 25, 2012 - link

    Notice, that setting up a RAID with your SSD might hinder the OS to see the SSDs as SSD and not sending TRIM commands to the disks. My first (and current) gamer system consists of two Intel 80 GB SSD in a RAID0 setup, but the OS (and Intel's toolbox) does not recognize them as SSD.

Log in

Don't have an account? Sign up now