Mobile Ivy Bridge Lineup and New Chipsets

Similar to the Sandy Bridge rollout, Intel is starting at the high-end with Ivy Bridge and will work its way down from here. All told there are six new mobile Ivy Bridge processors launching today: one Extreme Edition, two consumer i7 models, and three OEM i7 models. You’ll note that there are currently no announced Core i3, Core i5, or Pentium processors; those will come later (though leaked information already gives a hint of what’s to come). Here’s the full rundown of the current mobile Ivy Bridge CPUs, all of which will be quad-core:

Intel 3rd Generation Core Mobile Series Processors
Processor Number i7-3920XM i7-3820QM i7-3720QM
Cores/Threads 4/8 4/8 4/8
CPU Base Frequency 2.9GHz 2.7GHz 2.6GHz
Max Turbo (SC/DC/QC) 3.8/3.7/3.6 3.7/3.6/3.5 3.6/3.5/3.4
L3 Cache 8MB 8MB 6MB
GPU Base Frequency 650MHz 650MHz 650MHz
Max GPU Frequency 1300MHz 1250MHz 1250MHz
TDP 55W 45W 45W
Package rPGA rPGA/BGA-1224 rPGA/BGA-1224
Price $1096 $568 $378

Intel 3rd Generation Core Mobile Series Processors
Processor Number i7-3615QM i7-3612QM i7-3610QM
Cores/Threads 4/8 4/8 4/8
CPU Base Frequency 2.3GHz 2.1GHz 2.3GHz
Max Turbo (SC/DC/QC) 3.3/3.2/3.1 3.1/3.0/2.8 3.3/3.2/3.1
L3 Cache 6MB 6MB 6MB
GPU Base Frequency 650MHz 650MHz 650MHz
Max GPU Frequency 1200MHz 1100MHz 1100MHz
TDP 45W 35W 45W
Package BGA-1224 rPGA/BGA-1224 rPGA
Price N/A (OEM) N/A (OEM) N/A (OEM)

Intel typically has several parts intended for OEMs along with the other retail products, and they don’t disclose pricing on the OEM parts. We’ve broken things down with the retail SKUs in the top table and the OEM versions in the second table. As usual there’s the obligatory Extreme Edition i7-3920XM, with the most extreme part being the price. For roughly twice the cost of the i7-3820QM, you get an extra 100MHz on the CPU side and 50MHz on the GPU, plus a 55W TDP. (You also get a fully unlocked multiplier, though I’m not convinced that’s super useful for notebooks.) The other two retail parts are likewise separated by 100MHz on the CPU clocks, but the 3720QM also cuts the L3 cache down to 6MB.

Move to the OEM parts and the story is again similar to what we saw with the Sandy Bridge launch, only with a few extra parts out of the gates. The i7-3615QM drops down another 300MHz from the 3720QM, and the GPU clock also drops 50MHz. The 3610QM is basically the same part but with a different package and a lower maximum GPU clock. Rounding things out, the i7-3612QM actually looks quite interesting; it’s clocked 200-300MHz slower than the other two parts, but it also drops the TDP to 35W—the first time we’ve seen Intel do a 35W TDP quad-core CPU. Of course TDP isn’t everything, but if it means better battery life without sacrificing the extra cores it should garner quite a few followers. With Sandy Bridge the i7-2630QM was very popular among OEMs, and the i7-361xQM models should follow suit.

Compared to the initial launch of Sandy Bridge, the quad-core Ivy Bridge parts are clocked on average 300-400MHz higher, but relative to the refreshed Sandy Bridge lineup Ivy Bridge only nets you an extra 100-200MHz (e.g. the 2760QM has a base clock of 2.4GHz and a max turbo of 3.5GHz—200MHz higher than the original i7-2720QM). Architecturally, we’ve discussed elsewhere what has and hasn’t changed; the short summary is that you get potentially better power and efficiency, slightly improved IPC (instructions per clock), some security changes, and a few new instructions. Most of these changes won’t have an immediate impact on performance, and very likely a large number of users won’t notice their presence (or lack if you stick with Sandy Bridge or another CPU). The real change is on the graphics side, and as we’ll see in a moment the change is significant.

New Mobile Chipsets

Along with the new CPUs, Intel will be launching some new chipsets. We’ve discussed the chipsets previously, but here’s a short table and overview:

Intel 7-Series Mobile Chipsets
Model HM75 HM76 HM77 UM77 QM77 QS77
USB Ports (USB 3.0) 12 (0) 12 (4) 14 (4) 10 (4) 14 (4) 14 (4)
PCIe 2.0 Lanes 8 8 8 4 8 8
SATA Ports (6Gb/s) 6 (2) 6 (2) 6 (2) 4 (1) 6 (2) 6 (2)
VGA Output X X X   X X
RAID     X X X X
Smart Response Technology     X X X X
Active Management Technology         X X
Small Business Advantage     X X X X

For most of our readers, HM77 is going to be the desired chipset, as it includes four USB 3.0 ports and Intel’s Smart Response Technology—the use of a small SSD as a caching device to improve overall performance without giving up the storage capacity of using a hard drive. Value-oriented laptops on the other hand will go with the HM75 and HM76 to help keep costs down. The Q-series chipsets are primarily focused on business laptops, while the UM77 will be for the ultrabook/ultraportable market. Besides the above features, all of the 7-series chipsets support Intel’s Anti-Theft Technology (the ability to remotely lock a laptop if it’s stolen), Wireless Display (WiDi—you’ll need an adapter on the display side as well), and up to three simultaneous displays (up from two displays in Sandy Bridge/6-series chipsets).

Ivy Bridge Intro: Putting Intel’s Mobile CPUs in Perspective Meet the ASUS N56VM


View All Comments

  • krumme - Tuesday, April 24, 2012 - link

    Whatever the benefit is, we dont see it now.
    Failure - hands down.
  • JarredWalton - Tuesday, April 24, 2012 - link

    FUD, hands down. Reply
  • BSMonitor - Monday, April 23, 2012 - link

    At these power levels, the benefit is not as noticeable.

    The benefit comes in the extreme low power envelope. None of the mobile processors released today are of that variety.
  • mgoldshteyn - Monday, April 23, 2012 - link

    So much for lighter laptops with Ivy Bridge. Reply
  • mgoldshteyn - Monday, April 23, 2012 - link

    With a mere 6-cell battery, to boot! Reply
  • JarredWalton - Monday, April 23, 2012 - link

    Lighter laptops are a design decision by the OEM, not the CPU. Putting in switchable graphics and all the other stuff adds weight, but ASUS chose to go for a more affordable product rather than spending a lot of time and money on industrial design and weight. I don't think you'll see IVB end up being heavier on average compared to SNB, but there's no inherent reason for it to be lighter either. Use more efficient and lighter cooling materials along with lighter materials for the chassis and you could certainly get a 15.6" IVB laptop down to 4.5 lbs., but you could do that with SNB as well (e.g. the Sony VAIO SE). Reply
  • mabellon - Monday, April 23, 2012 - link

    That's because Intel has only launched the desktop line and high end mobile chips. The CPUs destined for ultrabooks, the super efficient IVB chip (~17W) launch was delayed.

    The initial release includes 13 quad-core processors, most of which will be targeted at desktop computers.

    Further dual core processors, suitable for ultrabooks - thin laptops - will be announced "later this spring".

  • gorash - Monday, April 23, 2012 - link

    Nice... if only MacBooks had those specs with that price. I don't really need the optical drive though. Reply
  • dwade123 - Monday, April 23, 2012 - link

    And these companies continues to make crappy laptops. Seriously, with power efficient Ivy Bridge and no discrete GPU, they sure have terrible battery life. This is why Macbooks are one of the better laptops out there and deserves to be the model which others copies. Reply
  • xpsuser - Sunday, May 13, 2012 - link

    I have a HP DVT8 (weighs a ton with the regular battery). I bought it for the 18" screen and blu ray player - unfortunately the HP software (for blu ray/DVD playback) is full of bugs! I got the Dell XPS17 about a year ago. Dell knows how to make a laptop - it has the extended battery (lasted about 5.5 hrs new), it is light (I can easily carry it with one hand - could barely do that with the HP!) they use Cyberlink PowerDVD for viewing Blu Ray/DVDs (no problems!). I like the Dell but I don't like the lack of choices - by that I mean I can't opt out of their anti-virus choice, etc. Reply

Log in

Don't have an account? Sign up now