Gigabyte GA-Z77MX-D3H—Visual Inspection

In a twist to the previous motherboards, Gigabyte sent us a micro-ATX sample, the GA-Z77MX-D3H. While still a Z77 product, capable of dual GPU setups, we have a motherboard aimed at the cheaper end of the spectrum. This is shown with what looks like a 4 + 2 VRM power delivery, and the relatively small sized heatsinks. We are also limited in terms of fan headers (three), and rear panel USB 3.0 ports (only two) compared to the Z77X-UD3H WiFi bigger brother.

The socket itself is clean with little obstructions—fan headers are found below the VRM heatsink, where we have two of the 4-pin variety. The other fan header on board can be found at the bottom next to the TPM.

Despite being a cheaper small motherboard, we still have typical Gigabyte features, such as dual BIOSes next to the USB 3.0 header underneath the 24-pin ATX power connector, but only the SATA ports from the PCH. This means two SATA 6 Gbps and three SATA 3 Gbps. The chipset heatsink is also small but has enough surface area to keep Gigabyte confident of its functionality.

The south side of the board is relatively naked, with a front panel audio, fan header, TPM and two USB 2.0 headers. Given the look of the board and that it does not display many potential features (presumably to fit into a price bracket), I was not expecting anything elaborate such as power/reset buttons.

The PCIe layout is aimed at users wanting dual GPUs or users needing an extra PCIe device alongside their GPU. The PCIe layout becomes x16 (x8 on dual GPU), x1, x8, x4, with this final x4 only being PCIe 2.0.

The rear IO panel is more substantial than I assumed, which can only be a good thing. From left to right we have a pair of USB 2.0 (black), a combination PS/2 port, D-Sub, DVI, two USB 3.0 (blue), HDMI, four more USB 2.0 (black), gigabit Ethernet, and standard audio jacks with a combination optical SPDIF output.

Board Features

Gigabyte GA-Z77MX-D3H
Size mATX
CPU Interface LGA-1155
Chipset Intel Z77
Power Delivery TBC
Memory Slots Four DDR3 DIMM slots supporting up to 32 GB
Up to Dual Channel, 1066-1600 MHz
Video Outputs HDMI, DVI-D, D-Sub
Onboard LAN Atheros
Onboard Audio Via VT2021
Expansion Slots 2 x PCIe x16 Gen3 (x16, x8/8)
1 x PCIe x16 Gen2 (x4)
1 x PCIe x1 Gen2
Onboard SATA/RAID 2 x SATA 6 Gbps (PCH), Support for RAID 0, 1, 5, 10
4 x SATA 3 Gbps (PCH), Support for RAID 0, 1, 5, 10
USB 4 USB 3.0 ports (2 back panel, 2 from headers)
10 USB 2.0 ports (6 back panel, 4 from headers)
Onboard 4 x SATA 3 Gbps
2 x SATA 6 Gbps
3 x Fan Headers
1 x Front Panel Header
1 x Front Audio Header
1 x SPDIF Output Header
1 x USB 3.0 Header
2 x USB 2.0 Headers
1 x TPM
Power Connectors 1 x 24-pin ATX connector
1 x 8-pin 12V connector
Fan Headers 1 x CPU Fan Header (4-pin)
2 x SYS Fan Headers (4-pin)
IO Panel 1 x PS/2 Combo Port
1 x D-Sub
1 x DVI-D
1 x HDMI
2 x USB 3.0
6 x USB 2.0
1 x Gigabit Ethernet
1 x Optical SPDIF
Audio Jacks
Warranty Period 3 Years
Product Page Link

As with the Gigabyte Z77X-UD3H WiFi, this Z77MX-D3H comes with an Atheros/Via network and audio combination. Given the lack of features on the main area of the board due to the size and the audience this product is aiming for, it seems good if all you want is a stock processor and a working Ivy Bridge system with no frills.

Gigabyte GA-Z77X-UD3H Wifi MSI Z77A-GD65
Comments Locked

145 Comments

View All Comments

  • Iketh - Sunday, April 8, 2012 - link

    "handling input in a game engine" means nothing here. What matters is when your input is reflected in a rendered image and displayed on your monitor. That involves the entire package. Lucid basically prevents GPUs from rendering an image that won't get displayed in its entirety, allowing the GPU to begin work on the next image, effectively narrowing the gap from your input to the screen.
  • extide - Tuesday, April 10, 2012 - link

    I am sure he knows that. He was just giving a bit of detail as to his exact experience, of which I would bet is far more than most people on here. You have to be very aware of things such as latency and delay when you are handling input in a game engine. I agree with the OP and am skeptical also. The bit that makes me most curious is the transfer of the fully rendered screens from one framebuffer to the other, that has to add some latency, and probably enough to make the entire process worthless. It's not like Lucid has a good track record on stuff like this, I mean we all know how their cross platform SLI/CF took off and worked so well....
  • Iketh - Wednesday, April 11, 2012 - link

    Why would you need to physically copy framebuffers?? I'm sure pointers are used...

    I have no idea if this has tangible benefits, but theoretically it does. None of us know until we can test it. I'm more inclined to discredit the people already discrediting Lucid, despite Lucid's track record. That's what you call hating.
  • Iketh - Wednesday, April 11, 2012 - link

    excuse me, you're right... it has to copy the frame from gpu to igpu... what kind of crap tech is this???
  • ssj3gohan - Sunday, April 8, 2012 - link

    Personally, I'm absolutely uninterested in anything 'high-performance', especially fancy gaming stuff. Not to say that I don't think that's a valid market niche, but I see other possibilities.

    I'm really looking forward to new thin ITX boards with built-in DC-DC converter (i.e. running directly off a 19V brick), and I am especially wondering whether Intel (or Zotac, possibly) is going to build a golden board this time around. Last time, they made DH61AG which was a nice board, but lacked an msata port (kind of a must for a truly thin computer) and 'only' had an H61 chipset.

    With H77, I expect it will be possible to make a thin ITX board with USB 3.0 and a fast on-board SSD option, combining this with an HD 4000 equipped processor would enable users to build a truly thin (sub-4 inch thick) computer that fits on the back of their monitor but still provides ample computing power.
  • Senti - Sunday, April 8, 2012 - link

    It sounds to me that Lucid Virtual V-Sync is just glorified triple buffering with a lot of marketing and a bit of overhead for transferring frames and powering two video cards instead of one. I'm very skeptical on the HyperFormance too.
  • Cavalcade - Sunday, April 8, 2012 - link

    It seems a bit more involved than triple buffering, more like having 2 buffers where the back buffer is not flipped until it is fully rendered. Seems like this would lead to more stuttering, and given the number of times they asked Mr. Cutress to reiterate that this would be a bug, it may be something they are seriously concerned with.

    Thinking about it a little more, I'm not sure what advantages this system would have over a system with separated input and rendering modules. The academic side of me is extremely interested and hopeful, but the practical developer side of me is going to require a lot more to be brought on board.
  • Iketh - Sunday, April 8, 2012 - link

    Separate input and rendering modules, as I stated in an earlier post, means nothing. They allow for a responsive mouse cursor, for instance. But, when you actually provide input that alters the RENDERED WORLD, you have to wait for that input to reflect on screen. It doesn't matter how perfectly the software solution is architected, you still have to wait for the rendering of the image after your input.

    Lucid simply prevents renders that never get displayed in their entirety, allowing the GPU to work on the NEXT image, shortening the time from your input to the screen.
  • Cavalcade - Monday, April 9, 2012 - link

    The comment was to indicate that while I have experience writing input systems, rendering is still relatively new to me; simply a qualifier of my impression and opinion.

    The way I am understanding Lucid, it is attempting to preempt displaying a frame that is not fully rendered in time for the next screen refresh. By presenting a virtual interface to both the GPU and the application, the application believes the frame has been rendered (displaying user input at that time) and proceeds to render the next frame. Thinking more about it, would this reduce the time interval between input reflected in frame one (which was preempted) and frame two (which will be displayed) so that rather than having input sampled at a fixed rate (say 60Hz) and displayed at a variable rate, input would be more closely tied to the frame for which it is intended.

    My interest is rising, but it still seems like a rather complex solution to a problem that I either haven't experienced, or which doesn't really bother me.
  • Iketh - Tuesday, April 10, 2012 - link

    it's not preemtively doing anything, except determining if a frame added to the queue will finish rendering in time... if not, it >>>>DOESNT LET THE GPU RENDER IT<<<< and places the previously rendered image in its place, allowing the GPU to immediately begin work on the FOLLOWING frame... that's it... it cuts unneeded frames from queues

    as for your input sampling rate question, that's entirely based on how the application is coded to handle input, lucid has nothing to do with this...

Log in

Don't have an account? Sign up now