Rendering Performance: Cinebench

Cinebench, based on MAXON's software CINEMA 4D, is probably one of the most popular benchmarks around, and it is pretty easy to perform this benchmark on your own home machine. The benchmark supports 64 threads, more than enough for our 24- and 32-thread test servers. First we tested single-threaded performance, to evaluate the performance of each core.

Cinebench 11.5 Single threaded

Single-threaded performance is relatively poor when you do not enable Turbo Core: with that setting the Opteron 6276 scores only 0.57. So the single-threaded FP performance is about 10% lower, probably a result of the higher FP/SSE latencies of the Interlagos FPU. However, the 6276 Opteron can boost the clock speed to 3.2GHz. This 39% clock speed boost leads to a 37% (!) performance boost. The difference with the older "Istanbul" based Opteron "Magny-cours" 61xx can only get larger once software with support for the powerful FMAC and AVX capable units is available. Also newer compilers will take the longer FP latencies into account and will probably boost performance by a few percent even without using FMAC or AVX.

Before we look at the Multi-threaded benchmark, Andreas Stiller, the legendary German C't Journalist ("Processor Whispers") sent me this comment:

"You should be aware that Cinebench 11.5 is using Intel openMP (libguide40.dll), which does not support AMD-NUMA"

So while Cinebench is a valid bench as quite a few people use the Intel OpenMP libraries, it is not representative of all render engines. In fact, Cinebench probably only represent the smaller part of the market that uses the Intel OpenMP API. On dual CPU systems, the Opteron machines run a bit slower than they should; on quad CPU systems, this lack of "AMD NUMA" awareness will have a larger impact.

Cinebench R11.5 MT

We did not expect that the latest Opteron would outperform the previous one by a large margin. Cinebench is limited by SSE processing power. The ICC 11.0 compiler was the fastest compiler of its time for SSE/FP intensive software, even for the Opterons (up to 24% faster than the competing compilers), but it has no knowledge of newer architectures. And of course, the intel compiler does favor the Xeons.

The Opteron 6200 has a total of eight dual issue (if you count only those pipes that do calculations) FPUs, while the Opteron 6100 has a total of 12 dual issue FPUs. The only advantage that the 6200 has (if you do not use the FMAC or AVX capabilities) is that it can interleave two FP threads on one module. So you get 16 FP threads that can dispatch one FP per clock versus 12 FP threads that can dispatch two FP per clock. That capability is especially handy when your threads are blocked by memory accesses. This is hardly the case in Cinebench (but it is probably the reason why Interlagos does so well in some HPC tests) and as a result, the Opteron 6276 cannot pull away from the Opteron 6174.

Anand reported that the best Core i7 (2600K, 4 cores/8 threads, 3.4GHz) achieves 6.86. So considering that a dual Opteron 6200 is cheaper than the dual Xeon, and more manageable than two workstations, such a renderfarm may make some sense.

Power Management in Windows Server 2008 SP2 Rendering Performance: 3DSMax 2012
Comments Locked

106 Comments

View All Comments

  • duploxxx - Thursday, November 17, 2011 - link

    Very interesting review as usual Johan, thx. It is good to see that there are still people who want to thoroughly make reviews.

    While the message is clear on the MS OS of both power and performance i think it isn't on the VMware. First of all it is quite confusing to what settings exactly have been used in BIOS and to me it doesn't reflect the real final conclusion. If it ain't right then don't post it to my opinion and keep it for further review....

    I have a beta version of interlagos now for about a month and the performance testing depending on bios settings have been very challenging.

    When i see your results i have following thoughts.

    performance: I don't think that the current vAPU2 was able to stress the 2x16core enough, what was the avarage cpu usage in ESXTOP during these runs? On top of that looking at the result score and both response times it is clear that the current BIOS settings aren't optimal in the balanced mode. As you already mentioned the system is behaving strange.
    VMware themselves have posted a document for v5 regarding the power best practices which clearly mentions that these needs to be adapted. http://www.vmware.com/files/pdf/hpm-perf-vsphere5....

    To be more precise, balanced has never been the right setting on VMware, the preferred mode has always been high performance and this is how we run for example a +400 vmware server farm. We rather use DPM to reduce power then to reduce clock speed since this will affected total performance and response times much more, mainly on the virtualization platform and OEM bios creations (lets say lack of in depth finetuning and options).

    Would like to see new performance results and power when running in high performance mode and according the new vSphere settings....
  • JohanAnandtech - Thursday, November 17, 2011 - link

    "l it is quite confusing to what settings exactly have been used in BIOS and to me it doesn't reflect the real final conclusion"

    http://www.anandtech.com/show/5058/amds-opteron-in...
    You can see them here with your own eyes.
    + We configured the C-state mode to C6 as this is required to get the highest Turbo Core frequencies

    "performance: I don't think that the current vAPU2 was able to stress the 2x16core enough, what was the avarage cpu usage in ESXTOP during these runs?"

    93-99%.

    "On top of that looking at the result score and both response times it is clear that the current BIOS settings aren't optimal in the balanced mode."

    Balanced and high performance gave more or less the same performance. It seems that the ESX power manager is much better at managing p-states than the Windows one.

    We are currently testing Balanced + c-states. Stay tuned.
  • duploxxx - Thursday, November 17, 2011 - link

    thx for answers, i read the whole thread, just wasn't sure that you took the same settings for both windows and virtual.

    according to Vmware you shouldn't take balanced but rather OS controlled, i know my BIOS has that option, not sure for the supermicro one.

    quite a strange result with the ESXTOP above 90% with same performance results, there just seems to be a further core scaling issue on the vAPU2 with the performance results or its just not using turbo..... we know that the module doesn't have the same performance but the 10-15% turbo is more then enough to level that difference which would still leave you with 8 more cores

    When you put the power mode on high performance it should turbo all cores for the full length at 2.6ghz for the 6276, while you mention it results in same performance are you sure that the turbo was kicking in? ESXTOP CPU higher then 100%? it should provide more performance....
  • Calin - Friday, November 18, 2011 - link

    You're encrypting AES-256, and Anand seem to encryrpt AES-128 in the article you liked to in the Other Tests: TrueCrypt and 7-zip page
  • taltamir - Friday, November 18, 2011 - link

    Conclusion: "Intel gives much better performance/watt and performance in general; BD gives better performance/dollar"

    Problem: Watts cost dollars, lots of them in the server space because you need to some some pretty extreme cooling. Also absolute performance per physical space matters a lot because that ALSO costs tons of money.
  • UberApfel - Sunday, November 20, 2011 - link

    A watt-year is about $2.

    The difference in cost between a X5670 & 6276; $654

    On Page 7...
    X5670: 74.5 perf / 338 W
    6276: 71.2 perf / 363 W

    adjusted watt-per-performance for 6276: 363 * (74.5 / 71.2) = 380

    difference in power consumption: 42W

    If a server manages an average of 50% load over all time; the Xeon's supposed superior power-efficiency would pay for itself after only 31 years.

    Of course you're not taking into consideration that this test is pretty much irrelevant to the server market. Additionally, as the author failed to clarify when asked, Anandtech likely didn't use newer compilers which show up to a 100% performance increase in some applications ~ looky; http://www.phoronix.com/scan.php?page=article&...
  • Thermalzeal - Monday, November 21, 2011 - link

    Good job AMD, you had one thing to do, test your product and make sure it beat competitors at the same price, or gave comparable performance for a lower price.

    Seriously, wtf are you people doing?
  • UberApfel - Tuesday, November 22, 2011 - link

    Idiots like this is exactly why I say the review is biased. How can anyone with the ability to type be able to scan over this review and come to such a conclusion. At least with the confidence to comment.
  • zappb - Tuesday, November 29, 2011 - link

    completely agree - some very strange comments along these lines over the last 11 pages
  • zappb - Tuesday, November 29, 2011 - link

    posted by ars technica - incredibly tainted in intels favour

    The title is enough:

    "AMD's Bulldozer server benchmarks are here, and they're a catastrophe"

Log in

Don't have an account? Sign up now